Advertisement

DNA Nucleases and their Use in Livestock Production

  • Bjoern Petersen
Chapter

Abstract

DNA nucleases, including zinc-finger nucleases (ZFN), transcription activator-like endonucleases (TALENS), and meganucleases, possess long recognition sites and cutting domains and are thus capable of cutting DNA in a very specific manner. These molecular scissors mediate targeted genetic alterations by enhancing the DNA mutation rate via induction of double-strand breaks at a predetermined genomic site. Compared to conventional homologous recombination-based gene targeting, DNA nucleases can increase the targeting rate up to 10,000-fold, and gene disruption via mutagenic DNA repair is stimulated at a similar frequency. The successful application of different DNA nucleases has been demonstrated in a multitude of organisms, including insects, amphibians, plants, nematodes, and mammals, including livestock animals. Recently, another novel class of molecular scissors was described that uses short RNA sequences to target a specific genomic site (Fig. 7.1). The CRISPR/CAS9 originates from a bacterial defense mechanism and can be programmed to target almost any site within a genome. The ease and low costs to create very specific genetic alterations by DNA nucleases have revolutionized the production of genetically modified livestock. Current results indicate that DNA nucleases can be successfully employed in a broad range of organisms which renders them useful for improving the understanding of complex physiological systems, producing genetically modified animals, including creating large animal models for human diseases and creating specific cell lines. Genetic modifications could also increase animal welfare by making dehorning and sexing obsolete or by making farm animals resistant/resilient against specific pathogens. Livestock with a desired phenotype or trait can now be produced with previously unknown precision and ease and within a very short time frame considered to be impossible before their advent. This chapter provides an update on DNA nucleases and their underlying mechanism and focuses on their use in livestock production. It has to be kept in mind that, at the time of writing this chapter, none of the genetically modified livestock has entered the food chain or had been used for the production of livestock-derived products.

Keywords

Zinc-finger nucleases Transcription activator-like endonucleases Meganucleases CRISPR/CAS9 Molecular scissors Transgenic animals Gene targeting Genome editing 

References

  1. Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E, Minakhin L, Severinov K, Regev A, Lander ES, Koonin EV, Zhang F (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353(6299):aaf5573.  https://doi.org/10.1126/science.aaf5573 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bao L, Chen H, Jong U, Rim C, Li W, Lin X, Zhang D, Luo Q, Cui C, Huang H, Zhang Y, Xiao L, Fu Z (2014) Generation of GGTA1 biallelic knockout pigs via zinc-finger nucleases and somatic cell nuclear transfer. Sci China Life Sci 57(2):263–268.  https://doi.org/10.1007/s11427-013-4601-2 CrossRefPubMedGoogle Scholar
  3. Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug RG II, Tan W, Penheiter SG, Ma AC, Leung AY, Fahrenkrug SC, Carlson DF, Voytas DF, Clark KJ, Essner JJ, Ekker SC (2012) In vivo genome editing using a high-efficiency TALEN system. Nature 491(7422):114–118.  https://doi.org/10.1038/nature11537 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297.  https://doi.org/10.1146/annurev-genet-110410-132430 CrossRefPubMedGoogle Scholar
  5. Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161(3):1169–1175PubMedPubMedCentralGoogle Scholar
  6. Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436.  https://doi.org/10.1146/annurev-phyto-080508-081936 CrossRefPubMedGoogle Scholar
  7. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-Type III effectors. Science 326(5959):1509–1512.  https://doi.org/10.1126/science.1178811 CrossRefPubMedGoogle Scholar
  8. Burkard C, Lillico SG, Reid E, Jackson B, Mileham AJ, Ait-Ali T, Whitelaw CB, Archibald AL (2017) Precision engineering for PRRSV resistance in pigs: macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathog 13(2):e1006206.  https://doi.org/10.1371/journal.ppat.1006206 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CB, Fahrenkrug SC (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A 109(43):17382–17387.  https://doi.org/10.1073/pnas.1211446109 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Carlson DF, Lancto CA, Zang B, Kim ES, Walton M, Oldeschulte D, Seabury C, Sonstegard TS, Fahrenkrug SC (2016) Production of hornless dairy cattle from genome-edited cell lines. Nat Biotechnol 34(5):479–481.  https://doi.org/10.1038/nbt.3560 CrossRefPubMedGoogle Scholar
  11. Cathomen T, Joung JK (2008) Zinc-finger nucleases: the next generation emerges. Mol Ther 16(7):1200–1207.  https://doi.org/10.1038/mt.2008.114 CrossRefPubMedGoogle Scholar
  12. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39(12):e82.  https://doi.org/10.1093/nar/gkr218 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, Taunton J, Collingwood TN, Frodin M, Davis GD (2011) High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods 8(9):753–755.  https://doi.org/10.1038/nmeth.1653 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Choulika A, Perrin A, Dujon B, Nicolas JF (1995) Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol 15(4):1968–1973CrossRefPubMedPubMedCentralGoogle Scholar
  15. Christian M, Cermak T, Doyle E, Schmidt C, Zhang F, Hummel A, Bogdanove A, Voytas D (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823.  https://doi.org/10.1126/science.1231143 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cooper DK, Ayares D (2011) The immense potential of xenotransplantation in surgery. Int J Surg 9(2):122–129.  https://doi.org/10.1016/j.ijsu.2010.11.002 CrossRefPubMedGoogle Scholar
  18. Defrancesco L (2011) Move over ZFNs. Nat Biotechnol 29(8):681–684CrossRefGoogle Scholar
  19. Deng C, Capecchi MR (1992) Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol Cell Biol 12(8):3365–3371CrossRefPubMedPubMedCentralGoogle Scholar
  20. Denning C, Dickinson P, Burl S, Wylie D, Fletcher J, Clark AJ (2001) Gene targeting in primary fetal fibroblasts from sheep and pig. Cloning Stem Cells 3(4):221–231CrossRefPubMedGoogle Scholar
  21. Donoho G, Jasin M, Berg P (1998) Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic double-strand breaks in mouse embryonic stem cells. Mol Cell Biol 18(7):4070–4078CrossRefPubMedPubMedCentralGoogle Scholar
  22. Doyon Y, Choi VM, Xia DF, Vo TD, Gregory PD, Holmes MC (2010) Transient cold shock enhances zinc-finger nuclease-mediated gene disruption. Nat Methods 7(6):459–460.  https://doi.org/10.1038/nmeth.1456 CrossRefPubMedGoogle Scholar
  23. East-Seletsky A, O’Connell MR, Knight SC, Burstein D, Cate JH, Tjian R, Doudna JA (2016) Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538(7624):270–273.  https://doi.org/10.1038/nature19802 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Epinat JC, Arnould S, Chames P, Rochaix P, Desfontaines D, Puzin C, Patin A, Zanghellini A, Paques F, Lacroix E (2003) A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res 31(11):2952–2962CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ezzelarab M, Ayares D, Cooper DK (2005) Carbohydrates in xenotransplantation. Immunol Cell Biol 83(4):396–404.  https://doi.org/10.1111/j.1440-1711.2005.01344.x CrossRefPubMedGoogle Scholar
  26. Flisikowska T, Thorey IS, Offner S, Ros F, Lifke V, Zeitler B, Rottmann O, Vincent A, Zhang L, Jenkins S, Niersbach H, Kind AJ, Gregory PD, Schnieke AE, Platzer J (2011) Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS One 6(6):e21045.  https://doi.org/10.1371/journal.pone.0021045 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Flisikowska T, Kind A, Schnieke A (2014) Genetically modified pigs to model human diseases. J Appl Genet 55(1):53–64.  https://doi.org/10.1007/s13353-013-0182-9 CrossRefPubMedGoogle Scholar
  28. Fonfara I, Richter H, Bratovic M, Le Rhun A, Charpentier E (2016) The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532(7600):517–521.  https://doi.org/10.1038/nature17945 CrossRefPubMedGoogle Scholar
  29. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32(3):279–284.  https://doi.org/10.1038/nbt.2808 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551(7681):464–471.  https://doi.org/10.1038/nature24644 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Menoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325(5939):433.  https://doi.org/10.1126/science.1172447 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Guilinger JP, Thompson DB, Liu DR (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32:577.  https://doi.org/10.1038/nbt.2909 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hai T, Teng F, Guo R, Li W, Zhou Q (2014) One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24(3):372–375CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hauschild J, Petersen B, Santiago Y, Queisser AL, Carnwath JW, Lucas-Hahn A, Zhang L, Meng X, Gregory PD, Schwinzer R, Cost GJ, Niemann H (2011) Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci U S A 108(29):12013–12017.  https://doi.org/10.1073/pnas.1106422108 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hauschild-Quintern J, Petersen B, Cost GJ, Niemann H (2013a) Gene knockout and knockin by zinc-finger nucleases: current status and perspectives. Cell Mol Life Sci 70(16):2969–2983.  https://doi.org/10.1007/s00018-012-1204-1 CrossRefPubMedGoogle Scholar
  36. Hauschild-Quintern J, Petersen B, Queisser AL, Lucas-Hahn A, Schwinzer R, Niemann H (2013b) Gender non-specific efficacy of ZFN mediated gene targeting in pigs. Transgenic Res 22(1):1–3.  https://doi.org/10.1007/s11248-012-9647-6 CrossRefPubMedGoogle Scholar
  37. Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC, Zeitler B, Cherone JM, Meng X, Hinkley SJ, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29(8):731–734.  https://doi.org/10.1038/nbt.1927 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (2011) Heri gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29(8):699–700.  https://doi.org/10.1038/nbt.1939 CrossRefPubMedGoogle Scholar
  39. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. eLife 2:e00471.  https://doi.org/10.7554/eLife.00471 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93(3):1156–1160CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kim Y, Kweon J, Kim A, Chon JK, Yoo JY, Kim HJ, Kim S, Lee C, Jeong E, Chung E, Kim D, Lee MS, Go EM, Song HJ, Kim H, Cho N, Bang D, Kim S, Kim JS (2013) A library of TAL effector nucleases spanning the human genome. Nat Biotechnol 31(3):251–258.  https://doi.org/10.1038/nbt.2517 CrossRefPubMedGoogle Scholar
  42. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z (2016a) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490.  https://doi.org/10.1038/nature16526 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM, McCaw ZR, Aryee MJ, Joung JK (2016b) Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 34(8):869–874.  https://doi.org/10.1038/nbt.3620 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420–424.  https://doi.org/10.1038/nature17946 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kues WA, Niemann H (2004) The contribution of farm animals to human health. Trends Biotechnol 22(6):286–294.  https://doi.org/10.1016/j.tibtech.2004.04.003 CrossRefPubMedGoogle Scholar
  46. Kwon DN, Lee K, Kang MJ, Choi YJ, Park C, Whyte JJ, Brown AN, Kim JH, Samuel M, Mao J, Park KW, Murphy CN, Prather RS, Kim JH (2013) Production of biallelic CMP-Neu5Ac hydroxylase knock-out pigs. Sci Rep 3:1981.  https://doi.org/10.1038/srep01981 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B (2011a) TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39(1):359–372.  https://doi.org/10.1093/nar/gkq704 CrossRefPubMedGoogle Scholar
  48. Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, Weeks DP, Yang B (2011b) Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res 39(14):6315–6325.  https://doi.org/10.1093/nar/gkr188 gkr188 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  49. Li P, Estrada JL, Burlak C, Tector AJ (2013) Biallelic knockout of the alpha-1,3 galactosyltransferase gene in porcine liver-derived cells using zinc finger nucleases. J Surg Res 181:e39.  https://doi.org/10.1016/j.jss.2012.06.035 CrossRefPubMedGoogle Scholar
  50. Lillico SG, Proudfoot C, Carlson DF, Stverakova D, Neil C, Blain C, King TJ, Ritchie WA, Tan W, Mileham AJ, McLaren DG, Fahrenkrug SC, Whitelaw CB (2013) Live pigs produced from genome edited zygotes. Sci Rep 3:2847.  https://doi.org/10.1038/srep02847 CrossRefPubMedGoogle Scholar
  51. Lillico SG, Proudfoot C, King TJ, Tan W, Zhang L, Mardjuki R, Paschon DE, Rebar EJ, Urnov FD, Mileham AJ, McLaren DG, Whitelaw CB (2016) Mammalian interspecies substitution of immune modulatory alleles by genome editing. Sci Rep 6:21645.  https://doi.org/10.1038/srep21645 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Liu X, Wang Y, Guo W, Chang B, Liu J, Guo Z, Quan F, Zhang Y (2013) Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows. Nat Commun 4:2565.  https://doi.org/10.1038/ncomms3565 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Liu X, Wang Y, Tian Y, Yu Y, Gao M, Hu G, Su F, Pan S, Luo Y, Guo Z, Quan F, Zhang Y (2014) Generation of mastitis resistance in cows by targeting human lysozyme gene to beta-casein locus using zinc-finger nucleases. Proc Biol Sci 281(1780):20133368.  https://doi.org/10.1098/rspb.2013.3368 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu JK (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci U S A 108(6):2623–2628.  https://doi.org/10.1073/pnas.1019533108 1019533108 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826.  https://doi.org/10.1126/science.1232033 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Mansour SL, Thomas KR, Capecchi MR (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336(6197):348–352.  https://doi.org/10.1038/336348a0 CrossRefPubMedGoogle Scholar
  57. Meselson MS, Radding CM (1975) A general model for genetic recombination. Proc Natl Acad Sci U S A 72(1):358–361CrossRefPubMedPubMedCentralGoogle Scholar
  58. Miller J, McLachlan AD, Klug A (1985) Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4(6):1609–1614PubMedPubMedCentralCrossRefGoogle Scholar
  59. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29(2):143–148.  https://doi.org/10.1038/nbt.1755 CrossRefPubMedGoogle Scholar
  60. Moehle EA, Rock JM, Lee YL, Jouvenot Y, DeKelver RC, Gregory PD, Urnov FD, Holmes MC (2007) Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci U S A 104(9):3055–3060.  https://doi.org/10.1073/pnas.0611478104 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326(5959):1501–1501.  https://doi.org/10.1126/science.1178817 CrossRefPubMedGoogle Scholar
  62. Nowak-Imialek M, Niemann H (2012) Pluripotent cells in farm animals: state of the art and future perspectives. Reprod Fertil Dev 25(1):103–128.  https://doi.org/10.1071/RD12265 CrossRefPubMedGoogle Scholar
  63. Orlando SJ, Santiago Y, DeKelver RC, Freyvert Y, Boydston EA, Moehle EA, Choi VM, Gopalan SM, Lou JF, Li J, Miller JC, Holmes MC, Gregory PD, Urnov FD, Cost GJ (2010) Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res 38(15):e152.  https://doi.org/10.1093/nar/gkq512 gkq512 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  64. Pabo CO, Peisach E, Grant RA (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70:313–340.  https://doi.org/10.1146/annurev.biochem.70.1.313 CrossRefPubMedGoogle Scholar
  65. Palgrave CJ, Gilmour L, Lowden CS, Lillico SG, Mellencamp MA, Whitelaw CB (2011) Species-specific variation in RELA underlies differences in NF-kappaB activity: a potential role in African swine fever pathogenesis. J Virol 85(12):6008–6014.  https://doi.org/10.1128/JVI.00331-11 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252(5007):809–817CrossRefPubMedGoogle Scholar
  67. Petersen B, Lucas-Hahn A, Oropeza M, Hornen N, Lemme E, Hassel P, Queisser AL, Niemann H (2008) Development and validation of a highly efficient protocol of porcine somatic cloning using preovulatory embryo transfer in peripubertal gilts. Cloning Stem Cells 10(3):355–362.  https://doi.org/10.1089/clo.2008.0026 CrossRefPubMedGoogle Scholar
  68. Petersen B, Carnwath JW, Niemann H (2009) The perspectives for porcine-to-human xenografts. Comp Immunol Microbiol Infect Dis 32(2):91–105.  https://doi.org/10.1016/j.cimid.2007.11.014 CrossRefPubMedGoogle Scholar
  69. Petersen B, Frenzel A, Lucas-Hahn A, Herrmann D, Hassel P, Klein S, Ziegler M, Hadeler K-G, Niemann H (2016) Efficient production of biallelic GGTA1 knockout pigs by cytoplasmic microinjection of CRISPR/Cas9 into zygotes. Xenotransplantation 23(5):338–346.  https://doi.org/10.1111/xen.12258 CrossRefPubMedGoogle Scholar
  70. Proudfoot C, Carlson DF, Huddart R, Long CR, Pryor JH, King TJ, Lillico SG, Mileham AJ, McLaren DG, Whitelaw CB, Fahrenkrug SC (2015) Genome edited sheep and cattle. Transgenic Res 24(1):147–153.  https://doi.org/10.1007/s11248-014-9832-x CrossRefPubMedGoogle Scholar
  71. Radding CM (1982) Homologous pairing and strand exchange in genetic recombination. Annu Rev Genet 16:405–437.  https://doi.org/10.1146/annurev.ge.16.120182.002201 CrossRefPubMedGoogle Scholar
  72. Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T, Taft PJ, Rogan MP, Pezzulo AA, Karp PH, Itani OA, Kabel AC, Wohlford-Lenane CL, Davis GJ, Hanfland RA, Smith TL, Samuel M, Wax D, Murphy CN, Rieke A, Whitworth K, Uc A, Starner TD, Brogden KA, Shilyansky J, PB MC Jr, Zabner J, Prather RS, Welsh MJ (2008) Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321(5897):1837–1841.  https://doi.org/10.1126/science.1163600 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Rouet P, Smih F, Jasin M (1994) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A 91(13):6064–6068CrossRefPubMedPubMedCentralGoogle Scholar
  74. Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh JR (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29(8):697–698.  https://doi.org/10.1038/nbt.1934 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, Wang L, Hodgkins A, Iyer V, Huang X, Skarnes WC (2014) Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods 11(4):399–402.  https://doi.org/10.1038/nmeth.2857 CrossRefPubMedGoogle Scholar
  76. Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K, Zhang F, Koonin EV (2015) Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60(3):385–397.  https://doi.org/10.1016/j.molcel.2015.10.008 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S, Carroll D (2000) Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res 28(17):3361–3369CrossRefPubMedPubMedCentralGoogle Scholar
  78. Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25(7):786–793.  https://doi.org/10.1038/nbt1317 CrossRefPubMedGoogle Scholar
  79. Tan W, Carlson DF, Lancto CA, Garbe JR, Webster DA, Hackett PB, Fahrenkrug SC (2013) Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc Natl Acad Sci U S A 110(41):16526–16531.  https://doi.org/10.1073/pnas.1310478110 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Tan W, Proudfoot C, Lillico SG, Whitelaw CB (2016) Gene targeting, genome editing: from Dolly to editors. Transgenic Res 25(3):273–287.  https://doi.org/10.1007/s11248-016-9932-x CrossRefPubMedPubMedCentralGoogle Scholar
  81. Terns MP, Terns RM (2011) CRISPR-based adaptive immune systems. Curr Opin Microbiol 14(3):321–327.  https://doi.org/10.1016/j.mib.2011.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Tesson L, Usal C, Menoret S, Leung E, Niles BJ, Remy S, Santiago Y, Vincent AI, Meng X, Zhang L, Gregory PD, Anegon I, Cost GJ (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29(8):695–696.  https://doi.org/10.1038/nbt.1940 CrossRefPubMedGoogle Scholar
  83. Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32(6):569–576.  https://doi.org/10.1038/nbt.2908 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Vasquez KM, Marburger K, Intody Z, Wilson JH (2001) Manipulating the mammalian genome by homologous recombination. Proc Natl Acad Sci U S A 98(15):8403–8410.  https://doi.org/10.1073/pnas.111009698 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Voytas DF, Joung JK (2009) Plant science. DNA binding made easy. Science 326(5959):1491–1492.  https://doi.org/10.1126/science.1183604 CrossRefPubMedGoogle Scholar
  86. Wang J, Friedman G, Doyon Y, Wang NS, Li CJ, Miller JC, Hua KL, Yan JJ, Babiarz JE, Gregory PD, Holmes MC (2012) Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme. Genome Res 22(7):1316–1326.  https://doi.org/10.1101/gr.122879.111 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Watanabe M, Umeyama K, Matsunari H, Takayanagi S, Haruyama E, Nakano K, Fujiwara T, Ikezawa Y, Nakauchi H, Nagashima H (2010) Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases. Biochem Biophys Res Commun 402(1):14–18.  https://doi.org/10.1016/j.bbrc.2010.09.092 CrossRefPubMedGoogle Scholar
  88. Watanabe M, Nakano K, Matsunari H, Matsuda T, Maehara M, Kanai T, Kobayashi M, Matsumura Y, Sakai R, Kuramoto M, Hayashida G, Asano Y, Takayanagi S, Arai Y, Umeyama K, Nagaya M, Hanazono Y, Nagashima H (2013) Generation of interleukin-2 receptor gamma gene knockout pigs from somatic cells genetically modified by zinc finger nuclease-encoding mRNA. PLoS One 8(10):e76478.  https://doi.org/10.1371/journal.pone.0076478 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Welsh MJ, Rogers CS, Stoltz DA, Meyerholz DK, Prather RS (2009) Development of a porcine model of cystic fibrosis. Trans Am Clin Climatol Assoc 120:149–162PubMedPubMedCentralGoogle Scholar
  90. Whitworth KM, Rowland RR, Ewen CL, Trible BR, Kerrigan MA, Cino-Ozuna AG, Samuel MS, Lightner JE, McLaren DG, Mileham AJ, Wells KD, Prather RS (2016) Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol 34(1):20–22.  https://doi.org/10.1038/nbt.3434 CrossRefPubMedGoogle Scholar
  91. Whyte JJ, Prather RS (2012) Cell biology symposium: zinc finger nucleases to create custom-designed modifications in the swine (Sus scrofa) genome. J Anim Sci 90(4):1111–U1159.  https://doi.org/10.2527/jas.2011-4546 CrossRefPubMedGoogle Scholar
  92. Whyte JJ, Zhao J, Wells KD, Samuel MS, Whitworth KM, Walters EM, Laughlin MH, Prather RS (2011) Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev 78(1):2.  https://doi.org/10.1002/mrd.21271 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331–338.  https://doi.org/10.1038/nature10886 CrossRefPubMedGoogle Scholar
  94. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619):810–813CrossRefGoogle Scholar
  95. Yang D, Yang H, Li W, Zhao B, Ouyang Z, Liu Z, Zhao Y, Fan N, Song J, Tian J, Li F, Zhang J, Chang L, Pei D, Chen YE, Lai L (2011) Generation of PPARgamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res 21(6):979–982.  https://doi.org/10.1038/cr.2011.70 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Yu S, Luo J, Song Z, Ding F, Dai Y, Li N (2011) Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Res 21(11):1638–1640.  https://doi.org/10.1038/cr.2011.153 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759.  https://doi.org/10.1016/j.cell.2015.09.038 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI)Neustadt, a.Rbge, MarienseeGermany

Personalised recommendations