Playing in Streams of Knowledge: Multimodality in Perception and Action

  • Justin Christensen
Part of the Theory and History in the Human and Social Sciences book series (THHSS)


In this chapter, I propose dynamic systems theory as a means of understanding how we develop knowledge about our sensory modalities, our world and ourselves. Alongside this, I propose that we look at this dynamic development of knowledge mainly from a top–down perspective, whereby we predict our world in advance of our perceptions and actions in it, which thus leads our predictions to guide and shape our sensations and actions in the world. When we do this, I argue that we see how important our participation and play in the world are in enacting our world and allowing us our autonomy from the world. Finally, I suggest that if we consider top–down processing as a means of interacting with a meaningful world (one where our perceptions are seen as opportunities for action), then our aesthetic experiences can be seen as opportunities for transformation.


Multimodality Epistemology Predictive processing Embodiment 


  1. Ahmed, S. (2006). Queer phenomenology. Durham: Duke University Press.CrossRefGoogle Scholar
  2. Ashmore, J. F. (1987). A fast motile response in guinea-pig outer hair cells: The cellular basis of the cochlear amplifier. The Journal of Physiology, 388(1), 323–347. Scholar
  3. Barrett, L. F. (2017). How emotions are made: The secret life of the brain. Boston, MA: Houghton Mifflin Harcourt.Google Scholar
  4. Bruineberg, J., Kiverstein, J., & Rietveld, E. (2016). The anticipating brain is not a scientist: The free-energy principle from an ecological-enactive perspective. Synthese, 36(03), 1–28. Scholar
  5. Christensen, J. (2018). Sound and the aesthetics of play. Cham: Palgrave MacMillan.CrossRefGoogle Scholar
  6. Clark, A. (2016). Surfing uncertainty. New York, NY: Oxford University Press.CrossRefGoogle Scholar
  7. Clark, A. (2018). A nice surprise? Predictive processing and the active pursuit of novelty. Phenomenology and the Cognitive Sciences, 17(3), 521–534CrossRefGoogle Scholar
  8. Çorlu, M., Muller, C., Desmet, F., & Leman, M. (2015). The consequences of additional cognitive load on performing musicians. Psychology of Music, 43(4), 495–510. Scholar
  9. Cuffari, E. C., Di Paolo, E., & De Jaegher, H. (2014). From participatory sense-making to language: There and back again. Phenomenology and the Cognitive Sciences, 14(4), 1089–1125. Scholar
  10. Daniel, Y. (2005). Dancing wisdom. Chicago, IL: University of Illinois Press.Google Scholar
  11. De Jaegher, H., Di Paolo, E., & Adolphs, R. (2016). What does the interactive brain hypothesis mean for social neuroscience? A dialogue. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1693), 1–10. Scholar
  12. Di Paolo, E., Buhrmann, T., & Barandiaran, X. (2017). Sensorimotor Life. Oxford: Oxford University Press.Google Scholar
  13. Di Paolo, E. A., Rhohde, M., & De Jaegher, H. (2010). Horizons for the enactive mind: Values, social interaction, and play. In J. R. Stewart, E. A. Di Paolo, & O. Gapenne (Eds.), Enaction (pp. 33–88). Cambridge, MA: MIT Press.Google Scholar
  14. Edelman, G. M. (1987). Neural Darwinism: The theory of neuronal group selection. New York: Basic Books.Google Scholar
  15. Friston, K. (2009). The free-energy principle: a rough guide to the brain? Trends in Cognitive Sciences, 13(7), 293–301.CrossRefGoogle Scholar
  16. Gadamer, H.-G. (2004). Truth and method. (J. Weinsheimer & D. G. Marshall, Transl.). London: Continuum.Google Scholar
  17. Hatfield, B. D., Haufler, A. J., Hung, T.-M., & Spalding, T. W. (2004). Electroencephalographic studies of skilled psychomotor performance. Journal of Clinical Neurophysiology, 21(3), 144–156.CrossRefGoogle Scholar
  18. Heidegger, M. (2002). Off the beaten track. (J. Young & K. Haynes, Ed. & Transl.) Cambridge, MA: Cambridge University Press.Google Scholar
  19. Held, R., & Hein, A. (1963). Movement-produced stimulation in the development of visually guided behavior. Journal of Comparative and Physiological Psycology, 56, 872–876. Scholar
  20. Hinton, G. E. (2007). Learning multiple layers of representation. Trends in Cognitive Sciences, 11(10), 428–434. Scholar
  21. Hosoya, T., Baccus, S. A., & Meister, M. (2005). Dynamic predictive coding by the retina. Nature, 436(7047), 71–77. Scholar
  22. Hudspeth, A. J. (2008). Making an effort to listen: Mechanical amplification in the ear. Neuron, 59(4), 530–545. Scholar
  23. James, W. (1878). Remarks on Spencer’s definition of mind as correspondence. The Journal of Speculative Philosophy, 12(1), 1–18.Google Scholar
  24. Jäncke, L., Shah, N. J., & Peters, M. (2000). Cortical activations in primary and secondary motor areas for complex bimanual movements in professional pianists. Cognitive Brain Research, 10(1–2), 177–183. Scholar
  25. Kant, I. (2007). Critique of judgement. (N. Walker, Ed., J. C. Meredith Transl.) Oxford: Oxford University Press.Google Scholar
  26. Kohonen, T. (2012). Self-organization and associative memory. Berlin: Springer.Google Scholar
  27. Langner, R., Kellermann, T., Boers, F., Sturm, W., Willmes, K., & Eickhoff, S. B. (2011). Modality-specific perceptual expectations selectively modulate baseline activity in auditory, somatosensory, and visual cortices. Cerebral Cortex, 21(12), 2850–2862. Scholar
  28. Leys, R. (2011). The turn to affect: A critique. Critical Inquiry, 37(3), 434–472. Scholar
  29. Lickliter, R., & Bahrick, L. E. (2004). Perceptual development and the origins of multisensory responsiveness. In G. A. Calvert, C. Spence, & B. E. Stein (Eds.), The handbook of multisensory processes (pp. 643–654). Cambridge, MA: MIT Press.Google Scholar
  30. McAllister-Viel, T. (2007). Speaking with an international voice? Contemporary Theatre Review, 17(1), 97–106. Scholar
  31. Muckli, L. (2010). What are we missing here? Brain imaging evidence for higher cognitive functions in primary visual cortex V1. International Journal of Imaging Systems and Technology, 20(2), 131–139. Scholar
  32. Muckli, L., Kohler, A., Kriegeskorte, N., & Singer, W. (2005). Primary visual cortex activity along the apparent-motion trace reflects illusory perception. PLoS Biology, 3(8), e265. Scholar
  33. Münte, T. F., Nager, W., Beiss, T., Schroeder, C., & Altenmüller, E. (2003). Specialization of the specialized: Electrophysiological investigations in professional musicians. Annals of the New York Academy of Sciences, 999(1), 131–139. Scholar
  34. Murray, S. O., Kersten, D., Olshausen, B. A., Schrater, P., & Woods, D. L. (2002). Shape perception reduces activity in human primary visual cortex. Proceedings of the National Academy of Sciences, 99(23), 15164–15169. Scholar
  35. Murray, S. O., Schrater, P., & Kersten, D. (2004). Perceptual grouping and the interactions between visual cortical areas. Neural Networks, 17(5–6), 695–705. Scholar
  36. Neisser, U. (2014). Cognitive psychology. New York, NY: Psychology Press.CrossRefGoogle Scholar
  37. Noland, C., & Ness, S. A. (2008). Migrations of gesture. Minneapolis, MN: University of Minnesota Press.Google Scholar
  38. Oyama, S. (2000). The ontogeny of information. Durham: Duke University Press.CrossRefGoogle Scholar
  39. Peters, A. (2002). Examining neocortical circuits: Some background and facts. Journal of Neurocytology, 31(3–5), 183–193. Scholar
  40. Rowe, S. M. (2012). We dance for knowledge. Dance Research Journal, 40(01), 31–44. Scholar
  41. Sillito, A. M., & Jones, H. E. (2002). Corticothalamic interactions in the transfer of visual information. Philosophical Transactions of the Royal Society B: Biological Sciences, 357(1428), 1739–1752. Scholar
  42. Smith, F. W., & Muckli, L. (2010). Nonstimulated early visual areas carry information about surrounding context. Proceedings of the National Academy of Sciences, 107(46), 20099–20103. Scholar
  43. Smith, J. M., & Harper, D. (2003). Animal signals. Oxford: Oxford University Press.Google Scholar
  44. Solso, R. L. (2003). The psychology of art and the evolution of the conscious brain. Cambridge, MA: MIT Press.Google Scholar
  45. Spatz, B. (2015). What a body can do. London: Routledge.CrossRefGoogle Scholar
  46. Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. Cambridge, MA: MIT Press.Google Scholar
  47. Stewart, J. R., Gapenne, O., & Di Paolo, E. A. (2010). Enaction. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  48. Thelen, E. (1995). Motor development: A new synthesis. American Psychologist, 50(2), 79–95. Scholar
  49. Thelen, E., & Smith, L. (2006). Dynamic systems theories. In W. Damon, R. M. Lerner, K. A. Renninger, & I. E. Sigel (Eds.), Handbook of child psychology (Vol. 4, pp. 258–312). Hoboken, NJ: John Wiley & Sons.Google Scholar
  50. Thelen, E., & Smith, L. B. (1996). A dynamic systems approach to the development of cognition and action. Cambridge, MA: MIT Press.Google Scholar
  51. Toner, J., & Moran, A. (2015). In praise of conscious awareness. In G. Campitelli, M. H. Connors, M. Bilalić, & D. Z. Hambrick (Eds.), Psychological perspectives on expertise (pp. 232–236). Lausanne: Frontiers Media SA.Google Scholar
  52. Vilhauer, M. (2010). Gadamer’s ethics of play. Plymouth: Lexington Books.Google Scholar
  53. von Kriegstein, K., & Giraud, A.-L. (2006). Implicit multisensory associations influence voice recognition. PLOS Biology, 4(10), e326. Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Justin Christensen
    • 1
  1. 1.Music and Sound Knowledge GroupAalborg UniversityAalborgDenmark

Personalised recommendations