Technique and Application of Sex-Sorted Sperm in Domestic Farm Animals

  • Detlef RathEmail author
  • Chis Maxwell


The Food and Agriculture Organization of the United Nations has recognised that the production of pre-sexed livestock by sperm or embryo sexing as a useful breeding tool to increase production efficiency, especially for traits that are sex-related. In this chapter, we briefly explain sex determination in mammals, review approaches to identifying X and Y chromosome-bearing sperm and their practical implications for semen handling and artificial insemination (AI) and compare their importance and success in the main farm animal species. The problems associated with current technology for sperm sexing, as reflected in the damage caused to mammalian sperm are then considered, followed by an assessment of the potential for replacing this technology by other methods.

In mammals, the most efficient method to bias sex ratios in offspring is to separate X and Y chromosome-bearing sperm by flow cytometry before insemination. Numerous other techniques purporting to alter the sex ratio have been proposed or discussed. None of these were able to produce significant separation of fertile X and/or Y sperm populations or were not repeatable. Only quantitative methods, which differentiate between X and Y sperm on the basis of total DNA and then apply flow cytometric sorting, have been able to separate the two sperm populations with high accuracy. Sperm are labelled with a DNA fluorescent dye. After recognition and electric charging, droplets containing single sperm are deflected and pushed into a collection medium from which they are further processed. This set-up allows the identification and selection of individual sperm into populations with sort purities above 90% of the desired characteristics. A critical point is the orientation of sperm in front of a UV laser, requiring modifications of a standard flow cytometer. A specially designed nozzle assembly hydrodynamically focusses the sperm-containing laminar core stream by means of a sheath fluid and the specific geometrics of the internal assembly parts.

Sperm sorting requires special liquid media. For example, a system based on Tris extender has been developed for bull and ram semen. Besides TRIS and other ingredients, the medium contains antioxidant scavengers to combat reactive oxygen species (ROS) and the Hoechst dye 33342. Porcine semen is handled in a similar way, except that the sample fluid is based on TRIS-HEPES. The sample fluid for stallion semen is generally based on skim milk, INRA 96 or Kenney’s modified Tyrode (KMT). Sorted samples are collected in tubes pre-filled with collection medium. The composition of this medium is, in most cases, a TEST-yolk extender, supplemented with seminal plasma in order to decapacitate the collected sperm.

In the animal industries, changing the sex ratio of offspring can increase genetic progress and productivity. Animal welfare can be improved, for example, by decreasing obstetric difficulties in cattle and minimising environmental impacts by eliminating the unwanted sex. Sexed sperm has been most widely applied in the dairy industry, and it is likely that this will continue, dependent on the market situation. For US dairy farmers, milk production and the sale of surplus calves and cull cows are as important as the production of replacement heifers on-farm. Outside the USA, at least in Europe and Australia, the demand for sexed sperm is potentially high for milk producers to optimise herd management. In these countries, the genetically superior cows will be bred with X chromosome-bearing sperm to produce genetically superior females with high milk yield and for (female) pregnant heifer export to other countries. Besides AI, embryo transfer (ET) can be performed after insemination with sex-sorted sperm. The combination of sex-sorted sperm with in vitro embryo production (IVEP) is advantageous, but much more difficult than ET, and depends on species, individual semen donor and composition of media used for in vitro maturation, in vitro fertilisation (IVF) and in vitro culture.

Commercialisation of sex-sorted ram sperm has, to date, been restricted by the dearth of commercial sorting facilities in Australia and New Zealand, although sheep are the only species in which sex-sorted frozen-thawed sperm have been shown to have comparable, if not superior, fertility to that of non-sorted frozen-thawed controls. Moreover, there has been little incentive to take up the technology due to low rates of adoption of genetic improvement programmes and/or artificial breeding technology.

In pigs, apart from economic benefits from faster growth rates, sex-sorted sperm would provide major welfare advantages through the elimination of surgical castration. However, the current method of individual sperm sorting is not efficient enough to satisfy the potential demands of the porcine AI industry, due to the high number of sperm required for each insemination. For special applications, such as building up nucleus herds or for research, sexed boar sperm can be utilised in combination with specially adapted insemination strategies. A significant reduction in the total sperm dose, maintaining fertility, can be achieved if porcine semen is deposited deep in the uterus in front of the utero-tubal junction or directly into the oviduct. Only very few sperm are required for IVF using in vivo or in vitro matured oocytes. Transferring both gametes into the oviduct at the same time (gamete intrafallopian transfer – GIFT) can be used as an alternative to IVF. Even fewer sperm are required for intracytoplasmic sperm injection (ICSI) than for all other IVF methods. However, to date, these methods require laparoscopy or laparotomy for insemination, embryo or gamete transfer, which are not practicable as alternatives to castration.

In horses the preferred gender depends on the breed and range of use. Stallion sperm have a low sorting index and their sortability varies, not only among stallions but also among ejaculates. Additionally, the freezability of stallion sperm varies widely. Insemination with sex-sorted sperm has to be performed by hysteroscopy deep into the uterine horn, limiting the technology to high-value animals.

The sex-sorting process can cause sperm damage. The main sources of damage are incubation with the fluorescent stain and exposure to the UV laser, mechanical forces and electrical charge.

Future sorting methods may avoid the need to identify quantitative differences between X and Y chromosome-bearing sperm. This would require a specific marker related to only one sex. A promising system is based on gold nanoparticles, which can be functionalised with DNA probes. After internalisation of the probe into the sperm head, the Y chromosome-bearing sperm can be identified due to their strong plasmon resonance, which is more stable than fluorescent dyes. Non-invasive coupling of a specific DNA probe with the intact DNA double strand by triplex binding and accumulation of nanoparticles has been achieved, but to date internalisation of the gold nanoparticles requires further research. Another promising new method promotes the naturally occurring genomic variations by gene editing. It is not a question of if, only when these methods will be ready for the market and replace the existing sexing techniques.



This article is dedicated to Dr. Lawrence A. Johnson, who contributed most to the development and introduction of sperm sexing in farm animal reproduction. The authors of this paper are very thankful for his constant support and friendship. Larry Johnson celebrated his 80th birthday on July 9th, 2016. We also gratefully acknowledge all the students, technicians and scientists, who contributed in the laboratories of both authors, and who made the research on sperm sexing such an interesting part of our lives. We honour the personal friendships created during these projects, including that between the authors, which has encompassed some 25 years of collaboration.


  1. Abeydeera LR, Johnson LA, Welch GR, Wang WH, Boquest AC, Cantley TC, Rieke A, Day BN (1998) Birth of piglets preselected for gender following in vitro fertilization of in vitro matured pig oocytes by X and Y chromosome bearing spermatozoa sorted by high speed flow cytometry. Theriogenology 50(7):981–988PubMedCrossRefGoogle Scholar
  2. Ali JI, Eldridge FE, Koo GC, Schanbacher BD (1990) Enrichment of bovine X-chromosome and Y-chromosome bearing sperm with monoclonal H-Y antibody fluorescence-activated cell sorter. Arch Androl 24(3):235–245PubMedCrossRefGoogle Scholar
  3. Alkmin DV, Parrilla I, Tarantini T, del Olmo D, Vazquez JM, Martinez EA, Roca J (2016) Seminal plasma affects sperm sex sorting in boars. Reprod Fertil Dev 28(5):556–564PubMedCrossRefGoogle Scholar
  4. Alminana C, Caballero I, Heath PR, Maleki-Dizaji S, Parrilla I, Cuello C, Gil MA, Vazquez JL, Vazquez JM, Roca J, Martinez EA, Holt WV, Fazeli A (2014) The battle of the sexes starts in the oviduct: modulation of oviductal transcriptome by X and Y-bearing spermatozoa. BMC Genomics 15:293PubMedPubMedCentralCrossRefGoogle Scholar
  5. Amann RP (1999) Issues affecting commercialization of sexed sperm. Theriogenology 52(8):1441–1457PubMedCrossRefGoogle Scholar
  6. Arvizo RR, Miranda OR, Thompson MA, Pabelick CM, Bhattacharya R, Robertson JD, Rotello VM, Prakash YS, Mukherjee P (2010) Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett 10(7):2543–2548PubMedPubMedCentralCrossRefGoogle Scholar
  7. Barcelo-Fimbres M, Seidel GE (2004) Optimizing sperm concentration to maximize monospermy and minimize polyspermy with bovine in vitro fertilization. Poult Sci 83:371Google Scholar
  8. Barcelo-Fimbres M, Campos-Chillon LF, Seidel GE (2011) In vitro fertilization using non-sexed and sexed bovine sperm: sperm concentration, sorter pressure, and bull effects. Reprod Domest Anim 46(3):495–502PubMedCrossRefGoogle Scholar
  9. Barchanski A, Taylor U, Sajti CL, Gamrad L, Kues WA, Rath D, Barcikowski S (2015) Bioconjugated gold nanoparticles penetrate into spermatozoa depending on plasma membrane status. J Biomed Nanotechnol 11(9):1597–1607PubMedCrossRefGoogle Scholar
  10. Barrios B, Fernández-Juan M, Muiño-Blanco T, Cebrián-Pérez JA (2005) Immunocytochemical localization and biochemical characterization of two seminal plasma proteins that protect ram spermatozoa against cold shock. J Androl 26:539–549PubMedCrossRefGoogle Scholar
  11. Baumber J, Ball BA, Gravance CG, Medina V, Davies-Morel MCG (2000) The effect of reactive oxygen species on equine sperm motility, viability, acrosomal integrity, mitochondrial membrane potential, and membrane lipid peroxidation. J Androl 21(6):895–902PubMedGoogle Scholar
  12. Beal WE, White LM, Garner DL (1984) Sex ratio after insemination of bovine spermatozoa isolated using a bovine serum albumin gradient. J Anim Sci 58:1432–1436PubMedCrossRefGoogle Scholar
  13. Beernink FJ, Ericsson RJ (1982) Male sex preselection through sperm isolation. Fertil Steril 38(4):493–495PubMedCrossRefGoogle Scholar
  14. Beilby K, de Graaf S, Evans G, Maxwell WMC, Wilkening S, Wrenzycki C, Grupen C (2011) Quantitative mRNA expression in ovine blastocysts produced from X- and Y-chromosome bearing sperm, both in vitro and in vivo. Theriogenology 76(3):471–481PubMedCrossRefGoogle Scholar
  15. Bennett D, Boyse EA (1973) Sex-ratio progeny of mice inseminated with sperm treated with H-Y antiserum. Nature 246(5431):308–309PubMedCrossRefGoogle Scholar
  16. Bergeron A, Villemure M, Lazure C, Manjunath P (2005) Isolation and characterization of the major proteins of ram seminal plasma. Mol Reprod Dev 71:461–470PubMedCrossRefGoogle Scholar
  17. Bergmann A, Taylor U, Rath D (2012a) Flow-cytometric evaluation of lectin binding moieties on porcine uterine epithelial cells. Reprod Domest Anim 47:77CrossRefGoogle Scholar
  18. Bergmann A, Taylor U, Rath D (2012b) Interactions of spermatozoa and uterine epithelial cells in the pig: a cell culture study. Reprod Domest Anim 47:486Google Scholar
  19. Bhattacharya BC (1962) Different sedimentation rates of X- and Y- sperm and the question of arbitrary sex determination. Zentralblatt für Wissenschaft & Zoologie 166:203–250Google Scholar
  20. Bhattacharya BC, Bangham AD, Cro RJ, Keynes RD, Rowson LE (1966) An attempt to predetermine the sex of calves by artificial insemination with spermatozoa separated by sedimentation. N ature 211:863Google Scholar
  21. Blecher SR, Howie R, Li S, Detmar J, Blahut LM (1999) A new approach to immunological sexing of sperm. Theriogenology 52(8):1309–1321PubMedCrossRefGoogle Scholar
  22. Blondin P, Beaulieu M, Fournier V, Morin N, Crawford L, Madan P, King WA (2009) Analysis of bovine sexed sperm for IVF from sorting to the embryo. Theriogenology 71(1):30–38PubMedCrossRefGoogle Scholar
  23. Blottner S, Bostedt H, Mewes K, Pitra C (1994) Enrichment of bovine X-spermatozoa and Y-spermatozoa by free-flow electrophoresis. Zentralbl Veterinarmed A 41(6):466–474PubMedCrossRefGoogle Scholar
  24. Boe-Hansen GB, Morris ID, Ersboll AK, Greve T, Christensen P (2005) DNA integrity in sexed bull sperm assessed by neutral Comet assay and sperm chromatin structure assay. Theriogenology 63(6):1789–1802PubMedCrossRefGoogle Scholar
  25. Boklage CE (2005) The epigenetic environment: secondary sex ratio depends on differential survival in embryogenesis. Hum Reprod 20(3):583–587PubMedCrossRefGoogle Scholar
  26. Bombardelli GD, Soares HF, Chebel RC (2016) Time of insemination relative to reaching activity threshold is associated with pregnancy risk when using sex-sorted semen for lactating Jersey cows. Theriogenology 85(3):533–539PubMedCrossRefGoogle Scholar
  27. Bourdon RM, Brinks JS (1987a) Simulated efficiency of range beef-production. 1. Growth and milk-production. J Anim Sci 65(4):943–955PubMedCrossRefGoogle Scholar
  28. Bourdon RM, Brinks JS (1987b) Simulated efficiency of range beef-production. 2. Fertility traits. J Anim Sci 65(4):956–962PubMedCrossRefGoogle Scholar
  29. Bourdon RM, Brinks JS (1987c) Simulated efficiency of range beef-production. 3. Culling strategies and nontraditional management-systems. J Anim Sci 65(4):963–969PubMedCrossRefGoogle Scholar
  30. Bucci D, Galeati G, Tamanini C, Vallorani C, Rodriguez-Gil JE, Spinaci M (2012) Effect of sex sorting on CTC staining, actin cytoskeleton and tyrosine phosphorylation in bull and boar spermatozoa. Theriogenology 77(6):1206–1216PubMedCrossRefGoogle Scholar
  31. Buchanan BR, Seidel GE, McCue PM, Schenk JL, Herickhoff LA, Squires EL (2000) Insemination of mares with low numbers of either unsexed or sexed spermatozoa. Theriogenology 53(6):1333–1344PubMedCrossRefGoogle Scholar
  32. Buchini S, Leumann CJ (2003) New nucleoside analogues for the recognition of pyrimidine-purine inversion sites. Nucleosides Nucleotides Nucleic Acids 22(5–8):1199–1201PubMedCrossRefGoogle Scholar
  33. Byskov AG (1986) Differentiation of mammalian embryonic gonad. Physiol Rev 66(1):71–117PubMedCrossRefGoogle Scholar
  34. Campos-Chillon LF, de la Torre JF (2003) Effect of concentration of sexed bovine sperm sorted at 40 and 50 psi on developmental capacity of in vitro produced embryos. Theriogenology 59:506 (abstract)Google Scholar
  35. Carvalho JO, Sartori R, Machado GM, Mourao GB, Dode MAN (2010) Quality assessment of bovine cryopreserved sperm after sexing by flow cytometry and their use in in vitro embryo production. Theriogenology 74(9):1521–1530PubMedCrossRefGoogle Scholar
  36. Carvalho JO, Michalczechen-Lacerda VA, Sartori R, Rodrigues FC, Bravim O, Franco MM, Dode MAN (2012) The methylation patterns of the IGF2 and IGF2R genes in bovine spermatozoa are not affected by flow-cytometric sex sorting. Mol Reprod Dev 79(2):77–84PubMedCrossRefGoogle Scholar
  37. Catt JW (1996) Intracytoplasmic sperm injection (ICSI) and related technology. Anim Reprod Sci 42(1–4):239–250CrossRefGoogle Scholar
  38. Catt SL, Sakkas D, Bizzaro D, Bianchi PG, Maxwell WMC, Evans G (1997) Hoechst staining and exposure to UV laser during flow cytometric sorting does not affect the frequency of detected endogenous DNA nicks in abnormal and normal human spermatozoa. Mol Hum Reprod 3(9):821–825PubMedCrossRefGoogle Scholar
  39. Centurion F, Vazquez JM, Calvete JJ, Roca J, Sanz L, Parilla I, Garcia EM, Martinez E (2003) Influence of porcine spermadhesins on the susceptibility of boar spermatozoa to high dilution. Biol Reprod 69:640–646PubMedCrossRefGoogle Scholar
  40. Chang LB, Chou C-J, Shiu J-S, Tu P-A, Gao S-X, Peng S-Y, Wu S-C (2017) Artificial insemination of Holstein heifers with sex-sorted semen during the hot season in a subtropical region. Trop Anim Health Prod 49(6):1157–1162PubMedPubMedCentralCrossRefGoogle Scholar
  41. Chithrani BD, Chan WCW (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7(6):1542–1550PubMedCrossRefGoogle Scholar
  42. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668PubMedCrossRefGoogle Scholar
  43. Clulow JR, Buss H, Evans G, Sieme H, Rath D, Morris LHA, Maxwell WMC (2012) Effect of staining and freezing media on sortability of stallion spermatozoa and their post-thaw viability after sex-sorting and cryopreservation. Reprod Domest Anim 47(1):1–7PubMedCrossRefGoogle Scholar
  44. Clulow JR, Buss H, Sieme H, Rodger JA, Cawdell-Smith AJ, Evans G, Rath D, Morris LHA, Maxwell WMC (2008) Field fertility of sex-sorted and non-sorted frozen-thawed stallion spermatozoa. Anim Reprod Sci 108(3–4):287–297PubMedCrossRefGoogle Scholar
  45. Cran DG (1997) Production of lambs by low dose intrauterine insemination with flow cytometrically sorted and unsorted semen. Theriogenology 47:267CrossRefGoogle Scholar
  46. Cran DG, Johnson LA (1996) The predetermination of embryonic sex using flow cytometrically separated X and Y spermatozoa. Hum Reprod Update 2(4):355–363PubMedCrossRefGoogle Scholar
  47. Cran DG, Johnson LA, Polge C (1995) Sex preselection in cattle - a field trial. Vet Rec 136(19):495–496PubMedCrossRefGoogle Scholar
  48. Cran DG, Johnson LA, Miller NGA, Cochrane D, Polge C (1993) Production of bovine calves following separation of X-chromosome and Y-chromosome bearing sperm and in vitro fertilization. Vet Rec 132(2):40–41PubMedCrossRefGoogle Scholar
  49. Daniel C, Fahrenkrug S (2016) Genetic techniques for making animals with sortable sperm. Patent application “EP3003021”Google Scholar
  50. da Silva CMB, Ortega-Ferrusola C, Morrell JM, Martinez HR, Pena FJ (2016a) Flow cytometric chromosomal sex sorting of stallion spermatozoa induces oxidative stress on mitochondria and genomic DNA. Reprod Domest Anim 51(1):18–25CrossRefGoogle Scholar
  51. da Silva CMB, Ferrusola CO, Bolanos JMG, Davila MP, Martin-Munoz P, Morrell JM, Martinez HR, Pena FJ (2014) Effect of overnight staining on the quality of flow cytometric sorted stallion sperm: comparison with traditional protocols. Reprod Domest Anim 49(6):1021–1027CrossRefGoogle Scholar
  52. da Silva CMB, Ortega-Ferrusola C, Rodriguez AM, Bolanos JMG, Davila MP, Morrell JM, Martinez HR, Tapia JA, Aparicio IM, Pena FJ (2013) Sex sorting increases the permeability of the membrane of stallion spermatozoa. Anim Reprod Sci 138(3–4):241–251CrossRefGoogle Scholar
  53. da Silva CMB, Ortega-Ferrusola C, Morrell JM, Rodriguez Martinez H, Pena FJ (2016b) Flow cytometric chromosomal sex sorting of stallion spermatozoa induces oxidative stress on mitochondria and genomic DNA. Reprod Domest Anim 51(1):18–25CrossRefGoogle Scholar
  54. De Ambrogi M, Spinaci M, Galeati G, Tamanini C (2006) Viability and DNA fragmentation in differently sorted boar spermatozoa. Theriogenology 66(8):1994–2000PubMedCrossRefGoogle Scholar
  55. De Cecco M, Spinaci M, Zannoni A, Bernardini C, Seren E, Forni M, Bacci ML (2010) Coupling sperm mediated gene transfer and sperm sorting techniques: a new perspective for swine transgenesis. Theriogenology 74(5):856–862PubMedCrossRefGoogle Scholar
  56. de Graaf SP, Evans G, Maxwell WMC, O’Brien JK (2006) In vitro characteristics of fresh and frozen-thawed ram spermatozoa after sex sorting and re-freezing. Reprod Fertil Dev 18(8):867–874PubMedCrossRefGoogle Scholar
  57. de Graaf SP, Beilby KH, Underwood SL, Evans G, Maxwell WMC (2009) Sperm sexing in sheep and cattle: the exception and the rule. Theriogenology 71(1):89–97PubMedCrossRefGoogle Scholar
  58. de Graaf SP, Beilby K, O’Brien JK, Osborn D, Downing JA, Maxwell WMC, Evans G (2007a) Embryo production from superovulated sheep inseminated with sex-sorted ram spermatozoa. Theriogenology 67(1):550–555PubMedCrossRefGoogle Scholar
  59. de Graaf SP, Evans G, Gillan L, Guerra MMP, Maxwell WMC, O’Brien JK (2007b) The influence of antioxidant, cholesterol and seminal plasma on the in vitro quality of sorted and non-sorted ram spermatozoa. Theriogenology 67(2):217–227PubMedCrossRefGoogle Scholar
  60. de Graaf SP, Evans G, Maxwell WMC, Downing JA, O’Brien JK (2007c) Successful low dose insemination of flow cytometrically sorted ram spermatozoa in sheep. Reprod Domest Anim 42:648–653PubMedCrossRefGoogle Scholar
  61. de Wagenaar B, Dekker S, de Boer HL, Bomer JG, Olthuis W, van den Berg A, Segerink LI (2016) Towards microfluidic sperm refinement: impedance-based analysis and sorting of sperm cells. Lab Chip 16(8):1514–1522PubMedCrossRefGoogle Scholar
  62. Dean PN, Pinkel D, Mendelsohn ML (1978) Hydrodynamic orientation of sperm heads for flow cytometry. Biophys J 23:7–13PubMedPubMedCentralCrossRefGoogle Scholar
  63. del Olmo D, Parrilla I, Sanchez-Osorio J, Gomis J, Angel MA, Tarantini T, Gil MA, Cuello C, Vazquez JL, Roca J, Vaquez JM, Martinez EA (2014) Successful laparoscopic insemination with a very low number of flow cytometrically sorted boar sperm in field conditions. Theriogenology 81(2):315–320PubMedCrossRefGoogle Scholar
  64. de Lamirande E, Leclerc P, Gagnon C (1997) Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol Hum Reprod 3(3):175–194PubMedCrossRefGoogle Scholar
  65. Dmowski WP, Gaynor L, Rao R, Lawrence M, Scommegna A (1979) Use of albumin gradients for X-sperm and Y-sperm separation and clinical experience with male sex preselection. Fertil Steril 31(1):52–57PubMedCrossRefGoogle Scholar
  66. Downing TW, Garner DL, Ericsson SA, Redelman D (1991) Metabolic toxicity of fluorescent stains on thawed cryopreserved bovine sperm cells. J Histochem Cytochem 39(4):485–489PubMedCrossRefGoogle Scholar
  67. Durand RE, Olive PL (1982) Cytotoxicity, mutagenicity and DNA damage by Hoechst 33342. J Histochem Cytochem 30:111–116PubMedCrossRefGoogle Scholar
  68. Eggers S, Sinclair A (2012) Mammalian sex determination-insights from humans and mice. Chromosom Res 20(1):215–238CrossRefGoogle Scholar
  69. Eggers S, Ohnesorg T, Sinclair A (2014) Genetic regulation of mammalian gonad development. Nat Rev Endocrinol 10(11):673–683PubMedCrossRefGoogle Scholar
  70. Engelmann U, Krassnigg F, Schatz H, Schill W-B (1988) Separation of human X and Y spermatozoa by free-flow electrophoresis. Gamete Res 19(2):151–160PubMedCrossRefGoogle Scholar
  71. Erickson RP, Lewis SE, Butley M (1981) Is haploid gene-expression possible for sperm antigens. J Reprod Immunol 3(4):195–217PubMedCrossRefGoogle Scholar
  72. Ericsson RJ, Langevin CN, Nishino M (1973) Isolation of fractions rich in human Y sperm. Nature 246(5433):421–424PubMedCrossRefGoogle Scholar
  73. Ettema JF (2007) Economic opportunities for sexed semen on commercial dairies. Western Dairy News 7(3):67–68Google Scholar
  74. Everts M, Saini V, Leddon JL, Kok RJ, Stoff-Khalili M, Preuss MA, Millican CL, Perkins G, Brown JM, Bagaria H, Nikles DE, Johnson DT, Zharov VP, Curiel DT (2006) Covalently linked au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy. Nano Lett 6(4):587–591PubMedCrossRefGoogle Scholar
  75. Flaherty SP, Michalowska J, Swann NJ, Dmowski WP, Matthews CD, Aitken RJ (1997) Albumin gradients do not enrich Y-bearing human spermatozoa. Hum Reprod 12(5):938–942PubMedCrossRefGoogle Scholar
  76. Feugang JM, Youngblood RC, Greene JM, Fahad AS, Monroe WA, Willard ST, Ryan PL (2012) Application of quantum dot nanoparticles for potential non-invasive bio-imaging of mammalian spermatozoa. J Nanobiotechnol 10:45CrossRefGoogle Scholar
  77. Feugang JM (2017) Novel agents for sperm purification, sorting, and imaging. Mol Reprod Dev 84(9):832–841PubMedCrossRefGoogle Scholar
  78. Frijters ACJ, Mullaart E, Roelof RMG, van Hoorne RP, Moreno JF, Moreno O, Merton JS (2009) What affects fertility of sexed bull semen more, low sperm dosage or the sorting process? Theriogenology 71(1):64–67PubMedCrossRefGoogle Scholar
  79. Fulwyler MJ (1977) Hydrodynamic orientation of cells. J Histochem Cytochem 25(7):781–783PubMedCrossRefGoogle Scholar
  80. Gao HJ, Shi WD, Freund LB (2005) Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci U S A 102(27):9469–9474PubMedPubMedCentralCrossRefGoogle Scholar
  81. Garcia EM, Vázquez JM, Calvete JJ, Sanz L, Caballero I, Parilla I, Gil MA, Roca J, Martinez EA (2006) Dissecting the protective effect of the seminal plasma sperm adhesin PSP-I/PSP-II on boar sperm functionality. J Androl 27:434–442PubMedCrossRefGoogle Scholar
  82. Garner DL (2006) Flow cytometric sexing of mammalian sperm. Theriogenology 65(5):943–957PubMedCrossRefGoogle Scholar
  83. Garner DL (2009) Hoechst 33342: the dye that enabled differentiation of living X-and Y-chromosome bearing mammalian sperm. Theriogenology 71(1):11–21PubMedCrossRefGoogle Scholar
  84. Garner DL, Suh TK (2002) Effect of Hoechst 33342 staining and Laser illumination on the viability of sex-sorted bovine sperm. Theriogenology 57:746 abstractGoogle Scholar
  85. Garner DL, Seidel GE (2008) History of commercializing sexed semen for cattle. Theriogenology 69(7):886–895PubMedCrossRefGoogle Scholar
  86. Garner DL, Gledhill BL, Pinkel D, Lake S, Stephenson D, Vandilla MA, Johnson LA (1983) Quantification of the X-chromosome-bearing and Y-chromosome-bearing spermatozoa of domestic-animals by flow-cytometry. Biol Reprod 28(2):312–321PubMedCrossRefGoogle Scholar
  87. Gibb Z, Lambourne SR, Aitken RJ (2012) Do spermatozoa from fertile thoroughbred stallions live fast and die young? Reprod Domest Anim 47:587–588Google Scholar
  88. Gibb Z, Butler TJ, Morris LHA, Maxwell WMC, Grupen CG (2013) Quercetin improves the post-thaw characteristics of cryopreserved sex-sorted and non sorted stallion sperm. Theriogenology 79(6):1001–1009PubMedCrossRefGoogle Scholar
  89. Gledhill BL, Lake S, Steinmetz LL, Gray JW, Crawford JR, Dean PN, Vandilla MA (1976) Flow microfluorometric analysis of sperm DNA content - effect of cell-shape on fluorescence distribution. J Cell Physiol 87(3):367–375PubMedCrossRefGoogle Scholar
  90. Grossfeld R, Klinc P, Sieg B, Rath D (2005) Production of piglets with sexed semen employing a non-surgical insemination technique. Theriogenology 63(8):2269–2277PubMedCrossRefGoogle Scholar
  91. Guthrie HD, Johnson LA, Garrett WM, Welch GR, Dobrinsky JR (2002) Flow cytometric sperm sorting: effects of varying laser power on embryo development in swine. Mol Reprod Dev 61(1):87–92PubMedCrossRefGoogle Scholar
  92. Hancock RJT, Duncan D, Carey S, Cockett ATK, May A (1983) Anti-sperm antibodies, Hla antigens, and semen analysis. Lancet 2(8354):847–848PubMedCrossRefGoogle Scholar
  93. Hanley NA, Hagan DM, Clement-Jones M, Ball SG, Strachan T, Salas-Cortés L, McElreavey K, Lindsay S, Robson S, Bullen P, Ostrer H, Wilson DI (2000) SRY, SOX9, and DAX1 expression patterns during human sex determination and gonadal development. Mech Dev 91(1–2):403–407PubMedCrossRefGoogle Scholar
  94. Heer P (2007) Anpassung der Konservierungsprozesse für Hengstsperma an die Beltsville Sperm Sexing Technology. (Adaptation of cryo-preservation of stallion semen to the Beltsville Sperm Sexing Technology) Dissertation, Veterinary University, Hannover, GermanyGoogle Scholar
  95. Heisterkamp A, Lorbeer R, Masterrind GmbH, Meyer H, Rath D (2015) Apparatus and method for selecting particles. Pat.Appl.: US000009034260Google Scholar
  96. Hendriksen PJM, Tieman M, Vanderlende T, Johnson LA (1993) Binding of anti-H-Y monoclonal-antibodies to separated X-chromosome and Y-chromosome bearing porcine and bovine sperm. Mol Reprod Dev 35(2):189–196PubMedCrossRefGoogle Scholar
  97. Hohenboken WD (1999) Applications of sexed semen in cattle production. Theriogenology 52(8):1421–1433PubMedCrossRefGoogle Scholar
  98. Hollinshead FK, O’Brien JK, Maxwell WMC, Evans G (2002) Production of lambs of predetermined sex after the insemination of ewes with low numbers of frozen-thawed sorted X- or Y-chromosome-bearing spermatozoa. Reprod Fertil Dev 14(8):503–508PubMedCrossRefGoogle Scholar
  99. Hoogsteen K (1963) Crystal and molecular structure of a hydrogen-bonded complex between 1-methylthymine and 9-methyladenine. Acta Crystallogr 16(9):907–916CrossRefGoogle Scholar
  100. Inaba Y, Abe R, Geshi M, Matoba S, Nagai T, Somfai T (2016) Sex-sorting of spermatozoa affects developmental competence of in vitro fertilized oocytes in a bull-dependent manner. J Reprod Dev 62(5):451–456PubMedPubMedCentralCrossRefGoogle Scholar
  101. Inguran LLC, US (2013a) Device for high throughput sperm sorting. Pat. Appl.: US020140273192Google Scholar
  102. Inguran LLC, US (2013b) Device for high throughput sperm sorting. Pat. Appl.: US020140273179Google Scholar
  103. Inguran LLC, US (2013c) Methods for high throughput sperm sorting. Pat. Appl.: US020140273059Google Scholar
  104. Jacobs PA, Ross A (1966) Structural abnormalities of the Y chromosome in man. Nature 210(5034):352–354PubMedCrossRefGoogle Scholar
  105. Jain KK (2007) Applications of nanobiotechnology in clinical diagnostics. Clin Chem 53(11):2002–2009PubMedCrossRefGoogle Scholar
  106. Jiang W, Kim BYS, Rutka JT, Chan WCW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3(3):145–150PubMedCrossRefGoogle Scholar
  107. Johnson LA (1988) Flow cytometric determination of sperm sex-ratio in semen purportedly enriched for X-bearing or Y-bearing sperm. Theriogenology 29(1):265–265CrossRefGoogle Scholar
  108. Johnson LA (1991) Sex preselection in swine - altered sex-ratios in offspring following surgical insemination of flow sorted X-bearing and Y-bearing sperm. Reprod Domest Anim 26(6):309–314CrossRefGoogle Scholar
  109. Johnson LA (1997) Advances in gender preselection in swine. J Reprod Fertil Suppl 52:255–266PubMedGoogle Scholar
  110. Johnson LA (2000) Sexing mammalian sperm for production of offspring: the state-of-the-art. Anim Reprod Sci 61:93–107CrossRefGoogle Scholar
  111. Johnson LA, Pinkel D (1986) Modification of a laser-based flow cytometer for high-resolution DNA analysis of mammalian spermatozoa. Cytometry 7(3):268–273PubMedCrossRefGoogle Scholar
  112. Johnson LA, Clarke RN (1988) Flow sorting of X-chromosome-bearing and Y-chromosome-bearing mammalian sperm - activation and pronuclear development of sorted bull, boar, and ram sperm microinjected into hamster oocytes. Gamete Res 21(4):335–343PubMedCrossRefGoogle Scholar
  113. Johnson LA, Welch GR (1999) Sex preselection: high-speed flow cytometric sorting of X and Y sperm for maximum efficiency. Theriogenology 52(8):1323–1341PubMedCrossRefGoogle Scholar
  114. Johnson LA, Flook JP, Look MV (1987) Flow cytometry of X and Y chromosome-bearing sperm for DNA using an improved preparation method and staining with Hoechst 33342. Gamete Res 17(3):203–212PubMedCrossRefGoogle Scholar
  115. Johnson LA, Flook JP, Hawk HW (1989) Sex preselection in rabbits - live births from X-sperm and Y-sperm separated by DNA and cell sorting. Biol Reprod 41(2):199–203PubMedCrossRefGoogle Scholar
  116. Johnson LA, Rath D, Vazquez JM, Maxwell WMC, Dobrinsky JR (2005) Preselection of sex of offspring in swine for production: current status of the process and its application. Theriogenology 63(2):615–624PubMedCrossRefGoogle Scholar
  117. Johnson MD, Fresco JR (1999) Third-strand in situ hybridization (TISH) to non-denatured metaphase spreads and interphase nuclei. Chromosoma 108(3):181–189PubMedCrossRefGoogle Scholar
  118. Junge S, Taylor U, Schuberth HJ, Baulain U, Rath D (2010) Influence of inseminate components on the presence of leukocytes and spermatozoa in the porcine uterus 2 hours after artificial insemination (AI). Reprod Domest Anim 45:66Google Scholar
  119. Junge S, Taylor U, Schuberth HJ, Guenther J, Baulain U, Rath D (2011) Seminal plasma and spermatozoa modulate gene expression in the porcine uterus. Reprod Domest Anim 46:105Google Scholar
  120. Junge S, Taylor U, Bergmann A, Schuberth HJ, Guenther J, Baulein U, Rath D (2012) Modulated gene expression in the porcine uterus after contact with seminal plasma and spermatozoa - results of a microarray study. Reprod Domest Anim 47:29CrossRefGoogle Scholar
  121. Kaneko S, Yamaguchi J, Kobayashi T, Iizuka R (1983) Separation of human X-bearing and Y-bearing sperm using percoll density gradient centrifugation. Fertil Steril 40(5):661–665PubMedCrossRefGoogle Scholar
  122. Kawarasaki T, Welch GR, Long CR, Yoshida M, Johnson LA (1998) Verification of flow cytometrically-sorted X- and Y-bearing porcine spermatozoa and reanalysis of spermatozoa for DNA content using the fluorescence in situ hybridization (FISH) technique. Theriogenology 50(4):625–635PubMedCrossRefGoogle Scholar
  123. Klinc P, Rath D (2005) State of the art and perspectives of application of sorted sperm cells in farm animals. Züchtungskunde 77(2–3):218–229Google Scholar
  124. Klinc P, Rath D (2007) Reduction of oxidative stress in bovine spermatozoa during flow cytometric sorting. Reprod Domest Anim 42(1):63–67PubMedCrossRefGoogle Scholar
  125. Klinc P, Frese D, Osmers H, Rath D (2007) Insemination with sex sorted fresh bovine spermatozoa processed in the presence of antioxidative substances. Reprod Domest Anim 42(1):58–62PubMedCrossRefGoogle Scholar
  126. Knop K, Hoffmann N, Rath D, Sieme H (2005) Effects of cushioned centrifugation technique on sperm recovery and sperm quality in stallions with good and poor semen freezability. Anim Reprod Sci 89(1–4):294–297PubMedGoogle Scholar
  127. Knowlton SM, Sadasivam M, Tasoglu S (2015) Microfluidics for sperm research. Trends Biotechnol 33(4):221–229PubMedCrossRefGoogle Scholar
  128. Kobayashi J, Oguro H, Uchida H, Kohsaka T, Sasada H, Sato E (2004) Assessment of bovine X- and Y-bearing spermatozoa in fractions by discontinuous Percoll gradients with rapid fluorescence in situ hybridization. J Reprod Dev 50(4):463–469PubMedCrossRefGoogle Scholar
  129. Koundouros S, Verma P (2012) Significant enrichment of Y-bearing chromosome human spermatozoa using a modified centrifugation technique. Int J Androl 35(6):880–886PubMedCrossRefGoogle Scholar
  130. Krausz C, Casamonti E (2017) Spermatogenic failure and the Y chromosome. Hum Genet 136(5):637–655PubMedCrossRefGoogle Scholar
  131. Krisher RL, Wheeler MB (2010) Towards the use of microfluidics for individual embryo culture. Reprod Fertil Dev 22(1):32–39PubMedCrossRefGoogle Scholar
  132. Krueger C, Rath D, Johnson LA (1999) Low dose insemination in synchronized gilts. Theriogenology 52(8):1363–1373PubMedCrossRefGoogle Scholar
  133. Kurykin J, Hallap T, Jalakas M, Padrik P, Kaart T, Johannisson A, Jaakma U (2016) Effect of insemination-related factors on pregnancy rate using sexed semen in Holstein heifers. Czeh J Anim Sci 61(12):568–577CrossRefGoogle Scholar
  134. Leahy T, Celi P, Bathgate R, Evans G, Maxwell WMC, Marti JI (2010) Flow-sorted ram spermatozoa are highly susceptible to hydrogen peroxide damage but are protected by seminal plasma and catalase. Reprod Fertil Dev 22(7):1131–1140PubMedCrossRefGoogle Scholar
  135. Li JC, Zhu SB, He XJ, Sun R, He QY, Gan Y, Liu SJ, Funahashi H, Li YB (2016) Application of a microfluidic sperm sorter to in vitro production of dairy cattle sex-sorted embryos. Theriogenology 85(7):1211–1218PubMedCrossRefGoogle Scholar
  136. Libbus BL, Perreault SD, Johnson LA, Pinkel D (1987) Incidence of chromosome-aberrations in mammalian sperm stained with Hoechst-33342 and UV-laser irradiated during flow sorting. Mutat Res 182(5):265–274PubMedCrossRefGoogle Scholar
  137. Lindsey AC, Varner DD, Seidel GE, Bruemmer JE, Squires EL (2005) Hysteroscopic or rectally guided, deep-uterine insemination of mares with spermatozoa stored 18 h at either 5 degrees C or 15 degrees C prior to flow-cytometric sorting. Anim Reprod Sci 85(1–2):125–130PubMedCrossRefGoogle Scholar
  138. Lopez SR, de Souza JC, Gonzalez JZ, Sanchez AD, Romero-Aguirregomezcorta J, de Carvalho RR, Rath D (2013) Use of sex-sorted and unsorted frozen/thawed sperm and in vitro fertilization events in bovine oocytes derived from ultrasound-guided aspiration. Revista Brasileira De Zootecnia 42(10):721–727CrossRefGoogle Scholar
  139. Lu KH, Seidel GE (2004) Effects of heparin and sperm concentration on cleavage and blastocyst development rates of bovine oocytes inseminated with flow cytometrically-sorted sperm. Theriogenology 62(5):819–830PubMedCrossRefGoogle Scholar
  140. Lu KH, Cran DG, Seidel GE (1999) In vitro fertilization with flow-cytometrically-sorted bovine sperm. Theriogenology 52(8):1393–1405PubMedCrossRefGoogle Scholar
  141. Mancini R, Sieg B, Rath D (2013) Bull sperm motility and molecular kinetic of Hoechst dye are effected by the buffer system of extenders. Reprod Domest Anim 48:82Google Scholar
  142. Mandal D, Maran A, Yaszemski MJ, Bolander ME, Sarkar G (2009) Cellular uptake of gold nanoparticles directly cross-linked with carrier peptides by osteosarcoma cells. J Materials Sci Mater Med 20(1):347–350CrossRefGoogle Scholar
  143. Manger M, Bostedt H, Schill WB, Mileham AJ (1997) Effect of sperm motility on separation of bovine X- and Y-bearing spermatozoa by means of free-flow electrophoresis. Andrologia 29(1):9–15PubMedCrossRefGoogle Scholar
  144. Mari G, Bucci D, Love CC, Mislei B, Rizzato G, Giaretta E, Merlo B, Spinaci M (2015) Effect of cushioned or single layer semen centrifugation before sex sorting on frozen stallion semen quality. Theriogenology 83(6):953–958PubMedCrossRefGoogle Scholar
  145. Martinez EA, Vazquez JM, Roca J, Lucas X, Gil MA, Parrilla I, Vazquez JL, Day BN (2001) Successful non-surgical deep intrauterine insemination with small numbers of spermatozoa in sows. Reproduction 122(2):289–296PubMedCrossRefGoogle Scholar
  146. Martinez EA, Vazquez JM, Parrilla I, Cuello C, Gil MA, Rodriguez-Martinez H, Roca J, Vazquez JL (2006) Incidence of unilateral fertilizations after low dose deep intrauterine insemination in spontaneously ovulating sows under field conditions. Reprod Domest Anim 41(1):41–47PubMedCrossRefGoogle Scholar
  147. Matthijs A, Engel B, Woelders H (2003) Neutrophil recruitment and phagocytosis of boar spermatozoa after artificial insemination of sows, and the effects of inseminate volume, sperm dose and specific additives in the extender. Reproduction 125(3):357–367PubMedCrossRefPubMedCentralGoogle Scholar
  148. Matthijs A, Harkema W, Engel B, Woelders H (2000) In vitro phagocytosis of boar spermatozoa by neutrophils from peripheral blood of sows. J Reprod Fertil 120(2):265–273PubMedCrossRefGoogle Scholar
  149. Maxwell WMC, Johnson LA (1997) Chlortetracycline analysis of boar spermatozoa after incubation, flow cytometric sorting, cooling, or cryopreservation. Mol Reprod Dev 46(3):408–418PubMedCrossRefPubMedCentralGoogle Scholar
  150. Maxwell WMC, Johnson LA (1999) Physiology of spermatozoa at high dilution rates: the influence of seminal plasma. Theriogenology 52:1353–1362PubMedCrossRefGoogle Scholar
  151. Maxwell WMC, Long CR, Johnson LA, Dobrinsky JR, Welch GR (1998) The relationship between membrane status and fertility of boar spermatozoa after flow cytometric sorting in the presence or absence of seminal plasma. Reprod Fertil Dev 10:433–440PubMedCrossRefGoogle Scholar
  152. Maxwell WMC, Evans G, Hollinshead FK, Bathgate R, de Graaf SP, Eriksson BM, Gillan L, Morton KM, O'Brien JK (2004) Integration of sperm sexing technology into the ART toolbox. Anim Reprod Sci 82-3:79–95CrossRefGoogle Scholar
  153. Maxwell WMC, de Graaf SP, El-Hajj Ghaoui R, Evans G (2007) Seminal plasma effects on the sperm handling and female fertility. In: Juengel JL, Murray JF, Smith MF (eds) Reproduction in domestic ruminants VI. Nottingham University Press, Nottingham, pp 13–37Google Scholar
  154. McKenzie F, Faulds K, Graham D (2008) LNA functionalized gold nanoparticles as probes for double stranded DNA through triplex formation. Chem Commun 20:2367–2369CrossRefGoogle Scholar
  155. McNutt TL, Johnson LA (1996) Flow cytometric sorting of sperm: influence on fertilization and embryo fetal development in the rabbit. Mol Reprod Dev 43(2):261–267PubMedCrossRefGoogle Scholar
  156. Michl J (2014) Ultrastrukturelle Charakterisierung geschlechtsspezifisch sortierter Spermien. (Ultrastructural characterization of sex sorted sperm). Dissertation, University of Goettingen, GermanyGoogle Scholar
  157. Mittwoch U (2013) Sex determination. EMBO Rep 14(7):588–592PubMedPubMedCentralCrossRefGoogle Scholar
  158. Moce E, Graham JK, Schenk JL (2006) Effect of sex-sorting on the ability of fresh and cryopreserved bull sperm to undergo an acrosome reaction. Theriogenology 66(4):929–936PubMedCrossRefGoogle Scholar
  159. Morris LHA, Hunter RHF, Allen WR (2000) Hysteroscopic insemination of small numbers of spermatozoa at the uterotubal junction of preovulatory mares. J Reprod Fertil 118(1):95–100PubMedCrossRefGoogle Scholar
  160. Morton KM, Catt SL, Hollinshead FK, Maxwell WMC, Evans G (2004) Production of lambs after the transfer of fresh and cryopreserved in vitro produced embryos from prepubertal lamb oocytes and unsorted and sex-sorted frozen-thawed spermatozoa. Reprod Domest Anim 39(6):454–461PubMedCrossRefGoogle Scholar
  161. Morton KM, Herrmann D, Sieg B, Struckmann C, Maxwell WMC, Rath D, Evans G, Lucas-Hahn A, Niemann H, Wrenzycki C (2007) Altered mRNA expression patterns in bovine blastocysts after fertilisation in vitro using flow-cytometrically sex-sorted sperm. Mol Reprod Dev 74(8):931–940PubMedCrossRefGoogle Scholar
  162. Moruzzi JF (1979) Selecting a mammalian-species for the separation of X-chromosome-bearing and Y-chromosome-bearing spermatozoa. J Reprod Fertil 57(2):319–323PubMedCrossRefGoogle Scholar
  163. Nativo P, Prior IA, Brust M (2008) Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2(8):1639–1644PubMedCrossRefGoogle Scholar
  164. Niemann H, Kuhla B, Flachowsky G (2011) Perspectives for feed-efficient animal production. J Anim Sci 89(12):4344–4363PubMedCrossRefGoogle Scholar
  165. Palma GA, Olivier NS, Neumuller C, Sinowatz F (2008) Effects of sex-sorted spermatozoa on the efficiency of in vitro fertilization and ultrastructure of in vitro produced bovine blastocysts. Anat Histol Embryol 37(1):67–73PubMedGoogle Scholar
  166. Panarace M, Pellegrini RO, Basualdo MO, Bele M, Ursino DA, Cisterna R, Desimone G, Rodriguez E, Medina MJ (2014) First field results on the use of stallion sex-sorted semen in a large-scale embryo transfer program. Theriogenology 81(4):520–525PubMedCrossRefGoogle Scholar
  167. Parrilla I, Vazquez JM, Cuello C, Gil MA, Roca J, Di Berardino D, Martinez EA (2004) Hoechst 33342 stain and U.V. Laser exposure do not induce genotoxic effects in flow-sorted boar spermatozoa. Reproduction 128(5):615–621PubMedCrossRefGoogle Scholar
  168. Pelliccione F, Micillo A, Cordeschi G, D’Angeli A, Necozione S, Gandini L, Lenzi A, Francavilla F, Francavilla S (2011) Altered ultrastructure of mitochondrial membranes is strongly associated with unexplained asthenozoospermia. Fertil Steril 95(2):641–646PubMedCrossRefGoogle Scholar
  169. Petersen S, Barchanski A, Taylor U, Klein S, Rath D, Barcikowski S (2011) Penetratin-conjugated gold nanoparticles - design of cell-penetrating nanomarkers by femtosecond laser ablation. J Phys Chem C 115(12):5152–5159CrossRefGoogle Scholar
  170. Pinkel D, Garner DL, Gledhill BL, Lake S, Stephenson D, Johnson LA (1985) Flow cytometric determination of the proportions of X-chromosome-bearing and Y-chromosome-bearing sperm in samples of purportedly separated bull sperm. J Anim Sci 60(5):1303–1307PubMedCrossRefGoogle Scholar
  171. Pinkel D, Lake S, Gledhill BL, Vandilla MA, Stephenson D, Watchmaker G (1982) High-resolution DNA content measurements of mammalian sperm. Cytometry 3(1):1–9PubMedCrossRefGoogle Scholar
  172. Probst S, Rath D (2003) Production of piglets using intracytoplasmic sperm injection (ICSI) with flowcytometrically sorted boar semen and artificially activated oocytes. Theriogenology 59(3–4):961–973PubMedCrossRefGoogle Scholar
  173. Pyrzak R (1994) Separation of X-bearing and Y-bearing human spermatozoa using albumin gradients. Hum Reprod 9(10):1788–1790PubMedCrossRefGoogle Scholar
  174. Polge C, Salamon S, Wilmut I (1970) Fertilizing capacity of frozen boar semen following surgical insemination. Vet Rec 87:424–428PubMedCrossRefGoogle Scholar
  175. Quesnel FN, Wilcox CJ, Simerl NA, Sharma AK, Thatcher WW (1995) Effects of fetal sex and sire and other factors on periparturient and postpartum performance of dairy cattle. Braz J Genet 18(4):541–545Google Scholar
  176. Rath D, Johnson LA (2008) Application and commercialization of flow cytometrically sex-sorted semen. Reprod Domest Anim 43:338–346PubMedCrossRefGoogle Scholar
  177. Rath D, Sieme H (2003) Sexing of stallion semen. Pferdeheilkunde 19(6):675–676Google Scholar
  178. Rath D, Niemann H, Johnson LA (1994a) Gamete intrafallopian transfer (Gift), an alternative to in-vitro fertilization procedures for special applications. Reprod Domest Anim 29(5):349–351CrossRefGoogle Scholar
  179. Rath D, Johnson LA, Welch GR (1993) In vitro culture of porcine embryos: development to blastocysts after in vitro fertilization (IVF) with flow cytometrically sorted and unsorted semen. Theriogenology 39:293CrossRefGoogle Scholar
  180. Rath D, Johnson LA, Welch GR, Niemann H (1994b) Successful gamete intrafallopian transfer (Gift) in the porcine. Theriogenology 41(5):1173–1179PubMedCrossRefGoogle Scholar
  181. Rath D, Moench-Tegeder G, Taylor U, Johnson LA (2009) Improved quality of sex-sorted sperm: a prerequisite for wider commercial application. Theriogenology 71(1):22–29PubMedCrossRefGoogle Scholar
  182. Rath D, Johnson LA, Dobrinsky JR, Welch GR, Niemann H (1997) Production of piglets preselected for sex following in vitro fertilization with X and Y chromosome-bearing spermatozoa sorted by flow cytometry. Theriogenology 47(4):795–800PubMedCrossRefGoogle Scholar
  183. Rath D, Long CR, Dobrinsky JR, Welch GR, Schreier LL, Johnson LA (1999) In vitro production of sexed embryos for gender preselection: high-speed sorting of X-chromosome-bearing sperm to produce pigs after embryo transfer. J Anim Sci 77(12):3346–3352PubMedCrossRefGoogle Scholar
  184. Rath D, Tiedemann D, Gamrad L, Johnson LA, Klein S, Kues W, Mancini R, Rehbock C, Taylor U, Barcikowski S (2015) Sex-sorted boar sperm - an update on related production methods. Reprod Domest Anim 50:56–60PubMedCrossRefGoogle Scholar
  185. Rath D, Barcikowski S, de Graaf S, Garrels W, Grossfeld R, Klein S, Knabe W, Knorr C, Kues W, Meyer H, Michl J, Moench-Tegeder G, Rehbock C, Taylor U, Washausen S (2013) Sex selection of sperm in farm animals: status report and developmental prospects. Reproduction 145(1):R15–R30PubMedCrossRefGoogle Scholar
  186. Rehbock C, Jakobi J, Gamrad L, van der Meer S, Tiedemann D, Taylor U, Kues W, Rath D, Barcikowski S (2014) Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays. Beilstein J Nanotechnol 5:1523–1541PubMedPubMedCentralCrossRefGoogle Scholar
  187. Rens W, Welch GR, Johnson LA (1998) A novel nozzle for more efficient sperm orientation to improve sorting efficiency of X and Y chromosome-bearing sperm. Cytometry 33(4):476–481PubMedCrossRefGoogle Scholar
  188. Roca J, Carvajal G, Lucas X, Vazquez JM, Martinez EA (2003) Fertility of weaned sows after deep intrauterine insemination with a reduced number of frozen-thawed spermatozoa. Theriogenology 60(1):77–87PubMedCrossRefGoogle Scholar
  189. Roca J, Vazquez JM, Gil MA, Cuello C, Parrilla I, Martinez EA (2006) Challenges in pig artificial insemination. Reprod Domest Anim 41:43–53PubMedCrossRefGoogle Scholar
  190. Roca J, Parrilla I, Rodriguez-Martinez H, Gil MA, Cuello C, Vazquez JM, Martinez EA (2011) Approaches towards efficient use of boar semen in the pig industry. Reprod Domest Anim 46:79–83PubMedCrossRefGoogle Scholar
  191. Roelofs JB, Bouwman EB, Pedersen HG, Rasmussen ZR, Soede NM, Thomsen PD, Kemp B (2006) Effect of time of artificial insemination on embryo sex ratio in dairy cattle. Anim Reprod Sci 93(3–4):366–371PubMedCrossRefGoogle Scholar
  192. Rohde W, Porstmann T, Prehn S, Dorner G (1975) Gravitational pattern of Y-bearing human spermatozoa in density gradient centrifugation. J Reprod Fertil 42(3):587–591PubMedCrossRefGoogle Scholar
  193. Rorie RW (1999) Effect of timing of artificial insemination on sex ratio. Theriogenology 52(8):1273–1280PubMedCrossRefGoogle Scholar
  194. Rorie RW, Lester TD, Lindsey BR, McNew RW (1999) Effect of timing of artificial insemination on gender ratio in beef cattle. Theriogenology 52(6):1035–1041PubMedCrossRefGoogle Scholar
  195. Ross A, Robinson JA, Evans HJ (1975) Failure to confirm separation of X-bearing and Y-bearing human sperm using Bsa gradients. Nature 253(5490):354–355PubMedCrossRefGoogle Scholar
  196. Salamon S, Visser D (1973) Fertility after surgical insemination with frozen boar semen. Aust J Biol Sci 27(5):499–504CrossRefGoogle Scholar
  197. Salmaso S, Caliceti P, Amendola V, Meneghetti M, Magnusson JP, Pasparakis G, Alexander C (2009) Cell up-take control of gold nanoparticles functionalized with a thermoresponsive polymer. J Mater Chem 19(11):1608–1615CrossRefGoogle Scholar
  198. Samper JC, Morris L, Pena FJ, Plough TA (2012) Commercial breeding with sexed stallion semen: reality or fiction? J Equine Vet 32(8):471–474CrossRefGoogle Scholar
  199. Sander S (2016) Luminometrische Verlaufskontrolle des ATP-Gehaltes von flowzytometrisch geschlechtsdifferenzierten bovinen Spermien. (Luminometrical control of ATP content in flow cytometrically sex sorted bovine sperm). Dissertation, Veterinary University Hannover, GermanyGoogle Scholar
  200. Sato T, Sakuma T, Yokonishi T, Katagiri K, Kamimura S, Ogonuki N, Ogura A, Yamamoto T, Ogawa T (2015) Genome editing in mouse spermatogonial stem cell lines using TALEN and double-nicking CRISPR/Cas9. Stem Cell Rep 5(1):75–82CrossRefGoogle Scholar
  201. Sauer H, Bekhite MM, Hescheler J, Wartenberg M (2005) Redox control of angiogenic factors and CD31-positive vessel-like structures in mouse embryonic stem cells after direct current electrical field stimulation. Exp Cell Res 304(2):380–390PubMedCrossRefGoogle Scholar
  202. Schenk JL, Seidel GE (2007) Pregnancy rates in cattle with cryopreserved sexed spermatozoa; effects of laser intensity, staining conditions and catalase. Reprod Domes Ruminants VI Soc Reprod Fertil 64:165–167CrossRefGoogle Scholar
  203. Schenk JL, Suh TK, Seidel GE (2006) Embryo production from superovulated cattle following insemination of sexed sperm. Theriogenology 65(2):299–307PubMedCrossRefGoogle Scholar
  204. Schilling E, Thormaehlen D (1977) Enrichment of human X-chromosome and Y-chromosome bearing spermatozoa by density gradient centrifugation. Andrologia 9(1):106–110PubMedCrossRefGoogle Scholar
  205. Schulte RT, Chung YK, Ohl DA, Takayama S, Smith GD (2007) Microfluidic sperm sorting device provides a novel method for selecting motile sperm with higher DNA integrity. Fertil Steril 88:S76–S76CrossRefGoogle Scholar
  206. Seidel GE, Garner DL (2002) Current status of sexing mammalian spermatozoa. Reproduction 124(6):733–743PubMedCrossRefGoogle Scholar
  207. Seidel GE (2003a) Sexing mammalian sperm--intertwining of commerce, technology, and biology. Anim Reprod Sci 79(3–4):145–156PubMedCrossRefGoogle Scholar
  208. Seidel GE (2003b) Economics of selecting for sex: the most important genetic trait. Theriogenology 59(2):585–598PubMedCrossRefGoogle Scholar
  209. Seidel GE, Whittier JC (2015) BEEF SPECIES SYMPOSIUM: beef production without mature cows. J Anim Sci 93(9):4244–4251PubMedCrossRefGoogle Scholar
  210. Seidel GE, Schenk JL, Herickhoff LA, Doyle SP, Brink Z, Green RD, Cran DG (1999) Insemination of heifers with sexed sperm. Theriogenology 52(8):1407–1420PubMedCrossRefGoogle Scholar
  211. Seidel GE, Allen CH, Johnson LA, Holland MD, Brink Z, Welch GR, Graham JK, Cattell MB (1997) Uterine horn insemination of heifers with very low numbers of nonfrozen and sexed spermatozoa. Theriogenology 48(8):1255–1264CrossRefGoogle Scholar
  212. Seidman MM, Glazer PM (2003) The potential for gene repair via triple helix formation. J Clin Investig 112(4):487–494PubMedCrossRefGoogle Scholar
  213. Sevinc A (1968) Experiments on sex control by electrophoretic separation of spermatozoa in rabbit. J Reprod Fertil 16(1):7PubMedCrossRefGoogle Scholar
  214. Sharpe JC, Evans KM (2009) Advances in flow cytometry for sperm sexing. Theriogenology 71(1):4–10PubMedCrossRefGoogle Scholar
  215. Shastry PR, Hegde UC, Rao SS (1977) Use of ficoll-sodium metrizoate density gradient to separate human X-bearing and Y-bearing spermatozoa. Nature 269(5623):58–60PubMedCrossRefGoogle Scholar
  216. Shi XG, Wang SH, Meshinchi S, Van Antwerp ME, Bi XD, Lee IH, Baker JR (2007) Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small 3(7):1245–1252PubMedCrossRefGoogle Scholar
  217. Shi TY, Chen G, Huang X, Yuan Y, Wu X, Wu B, Li Z, Shun F, Chen H, Shi H (2012) Effects of reactive oxygen species from activated leucocytes on human sperm motility, viability and morphology. Andrologia 44:696–703PubMedCrossRefGoogle Scholar
  218. Shirai M, Matsuda S (1974) Galvanic separation of X-bearing and Y-bearing human spermatozoa. Jpn J Urol 65(5):297–302CrossRefGoogle Scholar
  219. Shirai M, Matsuda S, Mitsukaw S (1974) Electrophoretic separation of X- and Y-chromosome-bearing sperm in human semen. Tohoku J Exp Med 113(3):273–281PubMedCrossRefGoogle Scholar
  220. Shishito S, Shirai M, Sasaki K (1975) Galvanic separation of X-bearing and Y-bearing human spermatozoa. Int J Fertil 20(1):13–16PubMedGoogle Scholar
  221. Sills ES, Kirman I, Colombero LT, Hariprashad J, Rosenwaks Z, Palermo GD (1998) H-Y antigen expression patterns in human X- and Y-chromosome-bearing spermatozoa. Am J Reprod Immunol 40(1):43–47PubMedCrossRefGoogle Scholar
  222. Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster JW, Frischauf AM, Lovellbadge R, Goodfellow PN (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346(6281):240–244PubMedCrossRefGoogle Scholar
  223. Sinha RP, Hader DP (2002) UV-induced damage and repair: a review. Photochem Photobiol 1:225–236CrossRefGoogle Scholar
  224. Spinaci M, De Ambrogi M, Volpe S, Galeati G, Tamanini C, Seren E (2005) Effect of staining and sorting on boar sperm membrane integrity, mitochondrial activity and in vitro blastocyst development. Theriogenology 64(1):191–201PubMedCrossRefGoogle Scholar
  225. Spinaci M, Volpe S, Bernardint C, De Ambrogi M, Tamanini C, Seren E, Galeati G (2006) Sperm sorting procedure induces a redistribution of Hsp70 but not Hsp60 and Hsp90 in boar spermatozoa. J Androl 27(6):899–907PubMedCrossRefGoogle Scholar
  226. Spinaci M, Vallorani C, Bucci D, Bernardini C, Tamanini C, Seren E, Galeati G (2010) Effect of liquid storage on sorted boar spermatozoa. Theriogenology 74(5):741–748PubMedCrossRefGoogle Scholar
  227. Spinaci M, Perteghella S, Chlapanidas T, Galeati G, Vigo D, Tamanini C, Bucci D (2016) Storage of sexed boar spermatozoa: limits and perspectives. Theriogenology 85(1):65–73PubMedCrossRefGoogle Scholar
  228. Steverink DWB, Soede NM, Bouwman EG, Kemp B (1997) Influence of insemination-ovulation interval and sperm cell dose on fertilization in sows. J Reprod Fertil 111(2):165–171PubMedCrossRefGoogle Scholar
  229. Steverink DWB, Soede NM, Bouwman EG, Kemp B (1998) Semen backflow after insemination and its effect on fertilisation results in sows. Anim Reprod Sci 54(2):109–119PubMedCrossRefGoogle Scholar
  230. Stovel RT, Sweet RG, Herzenberg LA (1978) Means for orienting flat cells in flow systems. Biophys J 23(1):1–5PubMedPubMedCentralCrossRefGoogle Scholar
  231. Suh TK, Schenk JL, Seidel GE (2005) High pressure flow cytometric sorting damages sperm. Theriogenology 64(5):1035–1048PubMedCrossRefGoogle Scholar
  232. Suh RS, Phadke N, Ohl DA, Takayama S, Smith GD (2003) Rethinking gamete/embryo isolation and culture with microfluidics. Hum Reprod Update 9(5):451–461PubMedCrossRefGoogle Scholar
  233. Taylor U, Barchanski A, Kues W, Barcikowski S, Rath D (2012) Impact of metal nanoparticles on germ cell viability and functionality. Reprod Domest Anim 47:359–368PubMedCrossRefGoogle Scholar
  234. Taylor U, Rath D, Zerbe H, Schuberth HJ (2008) Interaction of intact porcine spermatozoa with epithetial cells and neutrophilic granulocytes during uterine passage. Reprod Domest Anim 43(2):166–175PubMedCrossRefGoogle Scholar
  235. Taylor U, Petersen S, Barcikowski S, Rath D, Klein S (2009c) Verification of gold nanoparticle uptake by bovine immortalised cells using laser scanning confocal microscopy. Cytometry Part A 75a(8):714Google Scholar
  236. Taylor U, Rehbock C, Streich C, Rath D, Barcikowski S (2014) Rational design of gold nanoparticle toxicology assays: a question of exposure scenario, dose and experimental setup. Nanomedicine 9(13):1971–1989PubMedCrossRefGoogle Scholar
  237. Taylor U, Klein S, Petersen S, Kues W, Barcikowski S, Rath D (2010) Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles. Cytometry Part A 77a(5):439–446Google Scholar
  238. Taylor U, Tiedemann D, Rehbock C, Kues WA, Barcikowski S, Rath D (2015) Influence of gold, silver and gold-silver alloy nanoparticles on germ cell function and embryo development. Beilstein J Nanotechnology 6:651–664CrossRefGoogle Scholar
  239. Taylor U, Schuberth HJ, Rath D, Michelmann HW, Sauter-Louis C, Zerbe H (2009a) Influence of inseminate components on porcine leucocyte migration in vitro and in vivo after pre- and post-ovulatory insemination. Reprod Domest Anim 44(2):180–188PubMedCrossRefGoogle Scholar
  240. Taylor U, Zerbe H, Seyfert HM, Rath D, Baulain U, Langner KFA, Schuberth HJ (2009b) Porcine spermatozoa inhibit post-breeding cytokine induction in uterine epithelial cells in vivo. Anim Reprod Sci 115(1–4):279–289PubMedCrossRefGoogle Scholar
  241. Tiedemann D, Taylor U, Rehbock C, Jakobi J, Klein S, Kues WA, Rath D (2014) Reprotoxicity of gold, silver, and gold-silver alloy nanoparticles on mammalian gametes. Analyst 139(5):931–942PubMedCrossRefGoogle Scholar
  242. Tkachenko AG, Xie H, Liu YL, Coleman D, Ryan J, Glomm WR, Shipton MK, Franzen S, Feldheim DL (2004) Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjug Chem 15(3):482–490PubMedCrossRefGoogle Scholar
  243. Tomkins PT, Houghton JA (1988) The rapid induction of the acrosome reaction of human-spermatozoa by electropermeabilization. Fertil Steril 50(2):329–336PubMedCrossRefGoogle Scholar
  244. Trigal B, Gomez E, Caamano JN, Munoz M, Moreno J, Carrocera S, Martin D, Diez C (2012) In vitro and in vivo quality of bovine embryos in vitro produced with sex-sorted sperm. Theriogenology 78(7):1465–1475PubMedCrossRefGoogle Scholar
  245. Uwland J, Willems CM (1975) Results of semen separation using a modified electromagnetochemical method. Tijdschr Diergeneeskd 100:369–374Google Scholar
  246. van Munster EB (2002) Interferometry in flow to sort unstained X- and Y-chromosome-bearing bull spermatozoa. Cytometry 47(3):192–199PubMedCrossRefGoogle Scholar
  247. Vassena R, Heindryckx B, Peco R, Pennings G, Raya A, Sermon K, Veiga A (2016) Genome engineering through CRISPR/Cas9 technology in the human germline and pluripotent stem cells. Hum Reprod Update 22(4):411–419PubMedCrossRefGoogle Scholar
  248. Vazquez JM, Martinez EA, Parrilla I, Gil MA, Lucas X, Roca J (2002) Motility characteristics and fertilizing capacity of boar spermatozoa stained with Hoechst 33342. Reprod Domest Anim 37(6):369–374PubMedCrossRefGoogle Scholar
  249. Vazquez JM, Martinez EA, Parrilla I, Roca J, Gil MA, Vazquez JL (2003) Birth of piglets after deep intrauterine insemination with flow cytometrically sorted boar spermatozoa. Theriogenology 59(7):1605–1614PubMedCrossRefGoogle Scholar
  250. Vazquez JM, Roca J, Gil MA, Cuello C, Parrilla I, Vazquez JL, Martinez EA (2008b) New developments in low-dose insemination technology. Theriogenology 70(8):1216–1224PubMedCrossRefGoogle Scholar
  251. Vazquez JM, Roca J, Gil MA, Cuello C, Parrilla I, Caballero I, Vazquez JL, Martinez EA (2008a) Low-dose insemination in pigs: problems and possibilities. Reprod Domest Anim 43:347–354PubMedCrossRefGoogle Scholar
  252. Vazquez JM, Martinez EA, Roca J, Gil MA, Parrilla I, Cuello C, Carvajal G, Lucas X, Vazquez JL (2005) Improving the efficiency of sperm technologies in pigs: the value of deep intrauterine insemination. Theriogenology 63(2):536–547PubMedCrossRefGoogle Scholar
  253. Verma A, Uzun O, Hu YH, Hu Y, Han HS, Watson N, Chen SL, Irvine DJ, Stellacci F (2008) Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 7(7):588–595PubMedPubMedCentralCrossRefGoogle Scholar
  254. Vidal F, Moragas M, Catala V, Torello MJ, Santalo J, Calderon G, Gimenez C, Barri PN, Egozcue J, Veiga A (1993) Sephadex filtration and human serum-albumin gradients do not select spermatozoa by sex-chromosome – a fluorescent in-situ hybridization study. Hum Reprod 8(10):1740–1743PubMedCrossRefGoogle Scholar
  255. Vidament A (2005) French field results (1985–2005) on factors affecting fertility of frozen stallion semen. Anim Reprod Sci 89(1–4):115–136PubMedCrossRefGoogle Scholar
  256. Viring S, Einarsson S (1981) Sperm distribution within the genital-tract of naturally inseminated gilts. Nord Vet Med 33(3):145–149PubMedGoogle Scholar
  257. Waberski D, Meding S, Dirksen G, Weitze KF, Leiding C, Hahn R (1994) Fertility of long-term-stored boar semen – influence of extender (Androhep and Kiev), storage time and plasma droplets in the semen. Anim Reprod Sci 36(1–2):145–151CrossRefGoogle Scholar
  258. Walker DW, Benzer S (2004) Mitochondrial “swirls” induced by oxygen stress and in the Drosophila mutant hyperswirl. Proc Natl Acad Sci U S A 101(28):10290–10295PubMedPubMedCentralCrossRefGoogle Scholar
  259. Wang HX, Flaherty SP, Swann NJ, Matthews CD (1994a) Assessment of the separation of X-bearing and Y-bearing sperm on albumin gradients using double-label fluorescence in-situ hybridization. Fertil Steril 61(4):720–726PubMedCrossRefGoogle Scholar
  260. Wang HX, Flaherty SP, Swann NJ, Matthews CD (1994b) Discontinuous percoll gradients enrich X-bearing human spermatozoa – a study using double-label fluorescence in-situ hybridization. Hum Reprod 9(7):1265–1270PubMedCrossRefGoogle Scholar
  261. Wang XH, Fang HQ, Huang ZL, Shang W, Hou TT, Cheng AW, Cheng HP (2013) Imaging ROS signaling in cells and animals. J Mol Med 91(8):917–927PubMedPubMedCentralCrossRefGoogle Scholar
  262. Watkins AM, Chan PJ, Kalugdan TH, Patton WC, Jacobson JD, King A (1996) Analysis of the flow cytometer stain Hoechst 33342 on human spermatozoa. Mol Hum Reprod 2(9):709–712PubMedCrossRefGoogle Scholar
  263. Welch GR, Johnson LA (1999) Sex preselection: laboratory validation of the sperm sex ratio of flow sorted X- and Y-sperm by sort reanalysis for DNA. Theriogenology 52(8):1343–1352PubMedCrossRefGoogle Scholar
  264. Windsor DP, Evans G, White IG (1993) Sex predetermination by separation of X and Y chromosome-bearing sperm: a review. Reprod Fertil Dev 5(1):155–171PubMedCrossRefGoogle Scholar
  265. Wu YX, Zhou H, Fan XY, Zhang Y, Zhang M, Wang YH, Xie ZF, Bai MZ, Yin Q, Liang D, Tang W, Liao JY, Zhou CK, Liu WJ, Zhu P, Guo HS, Pan H, Wu CL, Shi HJ, Wu LG, Tang FC, Li JS (2015) Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res 25(1):67–79PubMedCrossRefGoogle Scholar
  266. Xodo LE, Rathinavelan T, Quadrifoglio F, Manzini G, Yathindra N (2001) Targeting neighbouring poly(purine center dot pyrimidine) sequences located in the human bcr promoter by triplex-forming oligonucleotides. Eur J Biochem 268(3):656–664PubMedCrossRefGoogle Scholar
  267. Xu J, Guo Z, Su L, Nedambale TL, Zhang J, Schenk J, Moreno JF, Dinnyes A, Ji W, Tian XC, Yang X, Du F (2006) Developmental potential of vitrified Holstein cattle embryos fertilized in vitro with sex-sorted sperm. J Dairy Sci 89(7):2510–2518PubMedCrossRefGoogle Scholar
  268. Xu KP, Yadav BR, King WA, Betteridge KJ (1992) Sex-related differences in developmental rates of bovine embryos produced and cultured in vitro. Mol Reprod Dev 31(4):249–252PubMedCrossRefPubMedCentralGoogle Scholar
  269. Yoisungnern T, Choi Y-J, Han JW, Kang M-H, Das J, Gurunathan S, Chang WK (2015) Internalization of silver nanoparticles into mouse spermatozoa results in poor fertilization and compromised embryo development. Sci Rep 5:11170PubMedPubMedCentralCrossRefGoogle Scholar
  270. Zhang XD, Wu HY, Wu D, Wang YY, Chang JH, Zhai ZB, Meng AM, Liu PX, Zhang LA, Fan FY (2010) Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int J Nanomedicine 5:771–781PubMedPubMedCentralCrossRefGoogle Scholar
  271. Zhang Y, Bai Y, Jia J, Gao N, Li Y, Zhang R, Yan B (2014) Perturbation of physiological systems by nanoparticles. Chem Soc Rev 43(10):3762–3809PubMedCrossRefGoogle Scholar
  272. Zobel R, Gereš D, Pipal I, Buić V, Gračner D, Tkalcic S (2011) Influence of the semen deposition site on the calves’ sex ratio in simmental dairy cattle. Reprod Domest Anim 46(4):595–601PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Farm Animal GeneticsFriedrich-Loeffler-InstitutNeustadt-MarienseeGermany
  2. 2.Faculty of Veterinary ScienceUniversity of SydneySydneyAustralia

Personalised recommendations