Advertisement

In Vitro Production of (Farm) Animal Embryos

  • Christine Wrenzycki
Chapter

Abstract

Over the past decades, in vitro production (IVP) of bovine embryos has been significantly improved, and in particular bovine IVP is now widely applied under field conditions. This in vitro technique provides new opportunities for cattle producers, particularly in the dairy industry, to overcome infertility and to increase dissemination of animals with high genetic merit. Improvements in OPU/IVP resulted in large-scale international commercialization. More than half a million IVP embryos are generated on the yearly basis demonstrating the enormous potential of this technology. These advances and the fact that bovine and human early development is remarkably similar have prompted the use of bovine embryos as a model system to study early mammalian embryogenesis including humans. In horses, OPU/IVP is also an established procedure for breeding infertile and sports mares throughout the year. It requires ICSI because conventional IVF does not work in this species. In small ruminants, application of IVP on the commercial and research basis is low compared to other livestock species.

Despite all the improvements, embryos generated in vitro still differ from their in vivo-derived counterparts. Embryos must adjust to multiple microenvironments at preimplantation stages. Consequently, maintaining or mimicking the in vivo situation in vitro will aid to improving the quality and developmental competence of the resulting embryo.

The successful clinical application of the techniques in reproductive biotechnology requires both species-specific clinical skills and extensive laboratory experience.

Keywords

In vitro production (IVP) In vitro maturation (IVM) In vitro fertilization (IVF) In vitro culture (IVC) Cumulus-oocyte complex (COC) Sperm Embryo Preimplantation Culture media 

References

  1. Acosta TJ (2007) Studies of follicular vascularity associated with follicle selection and ovulation in cattle. J Reprod Develop 53(1):39–44.  https://doi.org/10.1262/Jrd.18153 CrossRefGoogle Scholar
  2. Acosta TJ, Hayashi KG, Ohtani M, Miyamoto A (2003) Local changes in blood flow within the preovulatory follicle wall and early corpus luteum in cows. Reproduction 125(5):759–767CrossRefGoogle Scholar
  3. Aguila L, Zambrano F, Arias ME, Felmer R (2017) Sperm capacitation pretreatment positively impacts bovine intracytoplasmic sperm injection. Mol Reprod Dev 84(7):649–659.  https://doi.org/10.1002/mrd.22834 CrossRefPubMedGoogle Scholar
  4. Albuz FK, Sasseville M, Lane M, Armstrong DT, Thompson JG, Gilchrist RB (2010) Simulated physiological oocyte maturation (SPOM): a novel in vitro maturation system that substantially improves embryo yield and pregnancy outcomes. Hum Reprod 25(12):2999–3011.  https://doi.org/10.1093/humrep/deq246 CrossRefPubMedGoogle Scholar
  5. Algriany O, Bevers M, Schoevers E, Colenbrander B, Dieleman S (2004) Follicle size-dependent effects of sow follicular fluid on in vitro cumulus expansion, nuclear maturation and blastocyst formation of sow cumulus oocytes complexes. Theriogenology 62(8):1483–1497.  https://doi.org/10.1016/j.theriogenology.2004.02.008 CrossRefPubMedGoogle Scholar
  6. Alminana C, Corbin E, Tsikis G, Alcantara-Neto AS, Labas V, Reynaud K, Galio L, Uzbekov R, Garanina AS, Druart X, Mermillod P (2017) Oviduct extracellular vesicles protein content and their role during oviduct-embryo cross-talk. Reproduction 154(3):153–168.  https://doi.org/10.1530/REP-17-0054 CrossRefPubMedGoogle Scholar
  7. Araujo VR, Gastal MO, Figueiredo JR, Gastal EL (2014) In vitro culture of bovine preantral follicles: a review. Reprod Biol Endocrinol 12:78.  https://doi.org/10.1186/1477-7827-12-78 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Arias ME, Sanchez R, Risopatron J, Perez L, Felmer R (2014) Effect of sperm pretreatment with sodium hydroxide and dithiothreitol on the efficiency of bovine intracytoplasmic sperm injection. Reprod Fertil Dev 26(6):847–854.  https://doi.org/10.1071/RD13009 CrossRefPubMedGoogle Scholar
  9. Baerwald AR, Walker RA, Pierson RA (2009) Growth rates of ovarian follicles during natural menstrual cycles, oral contraception cycles, and ovarian stimulation cycles. Fertil Steril 91(2):440–449.  https://doi.org/10.1016/j.fertnstert.2007.11.054 CrossRefPubMedGoogle Scholar
  10. Baltz JM (2012) Media composition: salts and osmolality. Methods Mol Biol 912:61–80.  https://doi.org/10.1007/978-1-61779-971-6_5 CrossRefPubMedGoogle Scholar
  11. Bender K, Walsh S, Evans ACO, Fair T, Brennan L (2010) Metabolite concentrations in follicular fluid may explain differences in fertility between heifers and lactating cows. Reproduction 139(6):1047–1055.  https://doi.org/10.1530/Rep-10-0068 CrossRefPubMedGoogle Scholar
  12. Benkhalifa M, Madkour A, Louanjli N, Bouamoud N, Saadani B, Kaarouch I, Chahine H, Sefrioui O, Merviel P, Copin H (2015) From global proteome profiling to single targeted molecules of follicular fluid and oocyte: contribution to embryo development and IVF outcome. Expert Rev Proteomics 12(4):407–423.  https://doi.org/10.1586/14789450.2015.1056782 CrossRefPubMedGoogle Scholar
  13. Berland MA, von Baer A, Ruiz J, Parraguez VH, Morales P, Adams GP, Ratto MH (2011) In vitro fertilization and development of cumulus oocytes complexes collected by ultrasound-guided follicle aspiration in superstimulated llamas. Theriogenology 75(8):1482–1488.  https://doi.org/10.1016/j.theriogenology.2010.11.047 CrossRefPubMedGoogle Scholar
  14. Besenfelder U, Havlicek V, Brem G (2012) Role of the oviduct in early embryo development. Reprod Domest Anim 47(Suppl 4):156–163.  https://doi.org/10.1111/j.1439-0531.2012.02070.x CrossRefPubMedGoogle Scholar
  15. Betteridge KJ, Eaglesome MD, Mitchell D, Flood PF, Beriault R (1982) Development of horse embryos up to 22 days after ovulation–observations on fresh specimens. J Anat 135(Aug):191–209PubMedPubMedCentralGoogle Scholar
  16. Blockeel C, Mock P, Verheyen G, Bouche N, Le Goff P, Heyman Y, Wrenzycki C, Hoffmann K, Niemann H, Haentjens P, de Los Santos MJ, Fernandez-Sanchez M, Velasco M, Aebischer P, Devroey P, Simon C (2009) An in vivo culture system for human embryos using an encapsulation technology: a pilot study. Hum Reprod 24(4):790–796.  https://doi.org/10.1093/humrep/dep005 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Boichard D, Chung H, Dassonneville R, David X, Eggen A, Fritz S, Gietzen KJ, Hayes BJ, Lawley CT, Sonstegard TS, Van Tassell CP, VanRaden PM, Viaud-Martinez KA, Wiggans GR, Bovine LDC (2012) Design of a bovine low-density SNP array optimized for imputation. PLoS One 7(3):e34130.  https://doi.org/10.1371/journal.pone.0034130 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Boichard D, Ducrocq V, Croiseau P, Fritz S (2016) Genomic selection in domestic animals: principles, applications and perspectives. C R Biol 339(7–8):274–277.  https://doi.org/10.1016/j.crvi.2016.04.007 CrossRefPubMedGoogle Scholar
  19. Brackett BG, Bousquet D, Boice ML, Donawick WJ, Evans JF, Dressel MA (1982) Normal development following invitro fertilization in the cow. Biol Reprod 27(1):147–158.  https://doi.org/10.1095/biolreprod27.1.147 CrossRefPubMedGoogle Scholar
  20. Brackett BG, Oliphant G (1975) Capacitation of rabbit spermatozoa Invitro. Biol Reprod 12(2):260–274.  https://doi.org/10.1095/biolreprod12.2.260 CrossRefPubMedGoogle Scholar
  21. Brandao DO, Maddox-Hyttel P, Lovendahl P, Rumpf R, Stringfellow D, Callesen H (2004) Post hatching development: a novel system for extended in vitro culture of bovine embryos. Biol Reprod 71(6):2048–2055.  https://doi.org/10.1095/biolreprod.103.025916 CrossRefPubMedGoogle Scholar
  22. Brannstrom M, Zackrisson U, Hagstrom HG, Josefsson B, Hellberg P, Granberg S, Collins WP, Bourne T (1998) Preovulatory changes of blood flow in different regions of the human follicle. Fertil Steril 69(3):435–442CrossRefGoogle Scholar
  23. Breitbart H, Shalev Y, Marcus S, Shemesh M (1995) Modulation of prostaglandin synthesis in mammalian sperm acrosome reaction. Hum Reprod 10(8):2079–2084CrossRefGoogle Scholar
  24. Brogliatti GM, Palasz AT, Rodriguez-Martinez H, Mapletoft RJ, Adams GP (2000) Transvaginal collection and ultrastructure of llama (Lama glama) oocytes. Theriogenology 54(8):1269–1279.  https://doi.org/10.1016/S0093-691x(00)00433-7 CrossRefPubMedGoogle Scholar
  25. Canovas S, Ross PJ (2016) Epigenetics in preimplantation mammalian development. Theriogenology 86(1):69–79.  https://doi.org/10.1016/j.theriogenology.2016.04.020 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Carnevale EM, da Silva MAC, Panzani D, Stokes JE, Squires EL (2005) Factors affecting the success of oocyte transfer in a clinical program for subfertile mares. Theriogenology 64(3):519–527.  https://doi.org/10.1016/j.theriogenology.2005.05.008 CrossRefPubMedGoogle Scholar
  27. Carvalho NA, Baruselli PS, Zicarelli L, Madureira EH, Visintin JA, D'Occhio MJ (2002) Control of ovulation with a GnRH agonist after superstimulation of follicular growth in buffalo: fertilization and embryo recovery. Theriogenology 58(9):1641–1650CrossRefGoogle Scholar
  28. Casaretto C, Sarrasague MM, Giuliano S, de Celis ER, Gambarotta M, Carretero I, Miragaya M (2012) Evaluation of Lama glama semen viscosity with a cone-plate rotational viscometer. Andrologia 44:335–341.  https://doi.org/10.1111/j.1439-0272.2011.01186.x CrossRefPubMedGoogle Scholar
  29. Catt JW, Rhodes SL (1995) Comparative intracytoplasmic sperm injection (ICSI) in human and domestic species. Reprod Fertil Dev 7(2):161–166 discussion 167CrossRefGoogle Scholar
  30. Cenariu M, Pall E, Cernea C, Groza I (2012) Evaluation of bovine embryo biopsy techniques according to their ability to preserve embryo viability. J Biomed Biotechnol 2012:541384.  https://doi.org/10.1155/2012/541384 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Chastant-Maillard S, Quinton H, Lauffenburger J, Cordonnier-Lefort N, Richard C, Marchal J, Mormede P, Renard JP (2003) Consequences of transvaginal follicular puncture on Well-being in cows. Reproduction 125(4):555–563CrossRefGoogle Scholar
  32. Chen S, Palma-Vera SE, Langhammer M, Galuska SP, Braun BC, Krause E, Lucas-Hahn A, Schoen J (2017) An air-liquid interphase approach for modeling the early embryo-maternal contact zone. Sci Rep 7:42298.  https://doi.org/10.1038/srep42298 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Chen SH, Seidel GE (1997) Effects of oocyte activation and treatment of spermatozoa on embryonic development following intracytoplasmic sperm injection in cattle. Theriogenology 48(8):1265–1273.  https://doi.org/10.1016/S0093-691x(97)00369-5 CrossRefGoogle Scholar
  34. Cognie Y, Crozet N, Guerin Y, Poulin N, Bezard J, Duchamp G, Magistrini M, Palmer E (1992) Invitro fertilization in ovine, caprine and equine species. Ann Zootech 41(3–4):353–359.  https://doi.org/10.1051/animres:19920316 CrossRefGoogle Scholar
  35. Colleau JJ (1991) Using embryo sexing within closed mixed multiple ovulation and embryo transfer schemes for selection on dairy-cattle. J Dairy Sci 74(11):3973–3984CrossRefGoogle Scholar
  36. Coulam CB, Goodman C, Rinehart JS (1999) Colour Doppler indices of follicular blood flow as predictors of pregnancy after in-vitro fertilization and embryo transfer. Hum Reprod 14(8):1979–1982CrossRefGoogle Scholar
  37. Craven L, Elson JL, Irving L, Tuppen HA, Lister LM, Greggains GD, Byerley S, Murdoch AP, Herbert M, Turnbull D (2011) Mitochondrial DNA disease: new options for prevention. Hum Mol Genet 20(R2):R168–R174.  https://doi.org/10.1093/hmg/ddr373 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Craven L, Tuppen HA, Greggains GD, Harbottle SJ, Murphy JL, Cree LM, Murdoch AP, Chinnery PF, Taylor RW, Lightowlers RN, Herbert M, Turnbull DM (2010) Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 465(7294):82–85.  https://doi.org/10.1038/nature08958 CrossRefPubMedPubMedCentralGoogle Scholar
  39. da Silveira JC, de Andrade GM, Nogueira MF, Meirelles FV, Perecin F (2015) Involvement of miRNAs and cell-secreted vesicles in mammalian ovarian Antral follicle development. Reprod Sci 22(12):1474–1483.  https://doi.org/10.1177/1933719115574344 CrossRefPubMedGoogle Scholar
  40. Deglincerti A, Croft GF, Pietila LN, Zernicka-Goetz M, Siggia ED, Brivanlou AH (2016) Self-organization of the in vitro attached human embryo. Nature 533(7602):251–254.  https://doi.org/10.1038/nature17948 CrossRefPubMedGoogle Scholar
  41. Diskin MG, Sreenan JM (1980) Fertilization and embryonic mortality-rates in beef heifers after artificial-insemination. J Reprod Fertil 59(2):463–468CrossRefGoogle Scholar
  42. Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB (2015) Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril 103(2):303–316.  https://doi.org/10.1016/j.fertnstert.2014.11.015 CrossRefPubMedGoogle Scholar
  43. Duranthon V, Renard JP (2001) The developmental competence of mammalian oocytes: a convenient but biologically fuzzy concept. Theriogenology 55(6):1277–1289CrossRefGoogle Scholar
  44. Fahrenkrug SC, Blake A, Carlson DF, Doran T, Van Eenennaam A, Faber D, Galli C, Gao Q, Hackett PB, Li N, Maga EA, Muir WM, Murray JD, Shi D, Stotish R, Sullivan E, Taylor JF, Walton M, Wheeler M, Whitelaw B, Glenn BP (2010) Precision genetics for complex objectives in animal agriculture. J Anim Sci 88(7):2530–2539.  https://doi.org/10.2527/jas.2010-2847 CrossRefPubMedGoogle Scholar
  45. Fair T (2010) Mammalian oocyte development: checkpoints for competence. Reprod Fert Develop 22(1):13–20.  https://doi.org/10.1071/RD09216 CrossRefGoogle Scholar
  46. Fair T, Hyttel P, Greve T (1995) Bovine oocyte diameter in relation to maturational competence and transcriptional activity. Mol Reprod Dev 42(4):437–442.  https://doi.org/10.1002/mrd.1080420410 CrossRefPubMedGoogle Scholar
  47. Fukuda Y, Ichikawa M, Naito K, Toyoda Y (1990) Birth of normal calves resulting from bovine oocytes matured, fertilized, and cultured with cumulus cells-invitro up to the blastocyst stage. Biol Reprod 42(1):114–119.  https://doi.org/10.1095/biolreprod42.1.114 CrossRefPubMedGoogle Scholar
  48. Funahashi H, Day BN (1993) Effects of the duration of exposure to hormone supplements on cytoplasmic maturation of pig oocytes invitro. J Reprod Fertil 98(1):179–185CrossRefGoogle Scholar
  49. Galli C, Colleoni S, Duchi R, Lagutina I, Lazzari G (2007) Developmental competence of equine oocytes and embryos obtained by in vitro procedures ranging from in vitro maturation and ICSI to embryo culture, cryopreservation and somatic cell nuclear transfer. Anim Reprod Sci 98(1–2):39–55.  https://doi.org/10.1016/j.anireprosci.2006.10.011 CrossRefPubMedGoogle Scholar
  50. Galli C, Duchi R, Colleoni S, Lagutina I, Lazzari G (2014) Ovum pick up, intracytoplasmic sperm injection and somatic cell nuclear transfer in cattle, buffalo and horses: from the research laboratory to clinical practice. Theriogenology 81(1):138–151.  https://doi.org/10.1016/j.theriogenology.2013.09.008 CrossRefPubMedGoogle Scholar
  51. Galli C, Vassiliev I, Lagutina I, Galli A, Lazzari G (2003) Bovine embryo development following ICSI: effect of activation, sperm capacitation and pre-treatment with dithiothreitol. Theriogenology 60(8):1467–1480CrossRefGoogle Scholar
  52. Gardner DK (2008) Dissection of culture media for embryos: the most important and less important components and characteristics. Reprod Fertil Dev 20(1):9–18CrossRefGoogle Scholar
  53. Gianaroli L, Magli MC, Pomante A, Crivello AM, Cafueri G, Valerio M, Ferraretti AP (2014) Blastocentesis: a source of DNA for preimplantation genetic testing. Results from a pilot study. Fertil Steril 102(6):1692–1699 e1696.  https://doi.org/10.1016/j.fertnstert.2014.08.021 CrossRefPubMedGoogle Scholar
  54. Gil MA, Cuello C, Parrilla I, Vazquez JM, Roca J, Martinez EA (2010) Advances in swine in vitro embryo production technologies. Reprod Domest Anim 45:40–48.  https://doi.org/10.1111/j.1439-0531.2010.01623.x CrossRefPubMedGoogle Scholar
  55. Gilchrist RB (2011) Recent insights into oocyte-follicle cell interactions provide opportunities for the development of new approaches to in vitro maturation. Reprod Fert Develop 23(1):23–31CrossRefGoogle Scholar
  56. Gilchrist RB, Zeng HT, Wang X, Richani D, Smitz J, Thompson JG (2015) Reevaluation and evolution of the simulated physiological oocyte maturation system. Theriogenology 84(4):656–657.  https://doi.org/10.1016/j.theriogenology.2015.03.032 CrossRefPubMedGoogle Scholar
  57. Ginther OJ, Gastal EL, Gastal MO, Bergfelt DR, Baerwald AR, Pierson RA (2004) Comparative study of the dynamics of follicular waves in mares and women. Biol Reprod 71(4):1195–1201.  https://doi.org/10.1095/biolreprod.104.031054 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Giuliano S, Carretero M, Gambarotta M, Neild D, Trasorras V, Pinto M, Miragaya M (2010) Improvement of llama (Lama glama) seminal characteristics using collagenase. Anim Reprod Sci 118(1):98–102.  https://doi.org/10.1016/j.anireprosci.2009.06.005 CrossRefPubMedGoogle Scholar
  59. Gloria A, Carluccio A, Wegher L, Robbe D, Befacchia G, Contri A (2016) Single and double layer centrifugation improve the quality of cryopreserved bovine sperm from poor quality ejaculates. J Anim Sci Biotech 7:30.  https://doi.org/10.1186/s40104-016-0088-6 CrossRefGoogle Scholar
  60. Goodla L, Morrell JM, Yusnizar Y, Stalhammar H, Johannisson A (2014) Quality of bull spermatozoa after preparation by single-layer centrifugation. J Dairy Sci 97(4):2204–2212.  https://doi.org/10.3168/jds.2013-7607 CrossRefPubMedGoogle Scholar
  61. Goto K, Yanagita K (1995) Normality of calves obtained by intracytoplasmic sperm injection. Hum Reprod 10(6):1554CrossRefGoogle Scholar
  62. Graf A, Krebs S, Heininen-Brown M, Zakhartchenko V, Blum H, Wolf E (2014) Genome activation in bovine embryos: review of the literature and new insights from RNA sequencing experiments. Anim Reprod Sci 149(1–2):46–58.  https://doi.org/10.1016/j.anireprosci.2014.05.016 CrossRefPubMedGoogle Scholar
  63. Grupen CG (2014) The evolution of porcine embryo in vitro production. Theriogenology 81(1):24–37.  https://doi.org/10.1016/j.theriogenology.2013.09.022 CrossRefPubMedGoogle Scholar
  64. Gutierrez CG, Ralph JH, Telfer EE, Wilmut I, Webb R (2000) Growth and antrum formation of bovine preantral follicles in long-term culture in vitro. Biol Reprod 62(5):1322–1328CrossRefGoogle Scholar
  65. Hanstedt A, Wilkening S, Bruning K, Honnens A, Wrenzycki C (2010) Effect of perifollicular blood flow on the quality of oocytes collected during repeated opu sessions. Reprod Fert Develop 22(1):223–223CrossRefGoogle Scholar
  66. Hendriks S, Dancet EA, van Pelt AM, Hamer G, Repping S (2015) Artificial gametes: a systematic review of biological progress towards clinical application. Hum Reprod Update 21(3):285–296.  https://doi.org/10.1093/humupd/dmv001 CrossRefPubMedGoogle Scholar
  67. Herrera C, Morikawa MI, Castex CB, Pinto MR, Ortega N, Fanti T, Garaguso R, Franco MJ, Castanares M, Castaneira C, Losinno L, Miragaya MH, Mutto AA (2015) Blastocele fluid from in vitro- and in vivo-produced equine embryos contains nuclear DNA. Theriogenology 83(3):415–420.  https://doi.org/10.1016/j.theriogenology.2014.10.006 CrossRefPubMedGoogle Scholar
  68. Herrera C, Revora M, Vivani L, Miragaya MH, Quintans C, Pasqualini RS, Losinno L (2008) In vitro production of equine embryos from young and old mares by intracytoplasmic sperm injection. Reprod Fert Develop 20(1):145.  https://doi.org/10.1071/Rdv20n1ab129 CrossRefGoogle Scholar
  69. Hikabe O, Hamazaki N, Nagamatsu G, Obata Y, Hirao Y, Hamada N, Shimamoto S, Imamura T, Nakashima K, Saitou M, Hayashi K (2016) Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature 539(7628):299–303.  https://doi.org/10.1038/nature20104 CrossRefPubMedGoogle Scholar
  70. Hinrichs K (2005) Update on equine ICSI and cloning. Theriogenology 64(3):535–541.  https://doi.org/10.1016/j.theriogenology.2005.05.010 CrossRefPubMedGoogle Scholar
  71. Hinrichs K, Digiorgio LM (1991) Embryonic-development after intra-follicular transfer of horse oocytes. J Reprod Fertil 44:369–374Google Scholar
  72. Hinrichs K, Williams KA (1997) Relationships among oocyte-cumulus morphology, follicular atresia, initial chromatin configuration, and oocyte meiotic competence in the horse. Biol Reprod 57(2):377–384.  https://doi.org/10.1095/biolreprod57.2.377 CrossRefPubMedGoogle Scholar
  73. Holm P, Booth PJ, Callesen H (2002) Kinetics of early in vitro development of bovine in vivo- and in vitro-derived zygotes produced and/or cultured in chemically defined or serum-containing media. Reproduction 123(4):553–565CrossRefGoogle Scholar
  74. Holm P, Booth PJ, Schmidt MH, Greve T, Callesen H (1999) High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology 52(4):683–700.  https://doi.org/10.1016/S0093-691x(99)00162-4 CrossRefPubMedGoogle Scholar
  75. Hossain MM, Salilew-Wondim D, Schellander K, Tesfaye D (2012) The role of microRNAs in mammalian oocytes and embryos. Anim Reprod Sci 134(1–2):36–44.  https://doi.org/10.1016/j.anireprosci.2012.08.009 CrossRefPubMedGoogle Scholar
  76. Hu J, Ma X, Bao JC, Li W, Cheng D, Gao Z, Lei A, Yang C, Wang H (2011) Insulin-transferrin-selenium (ITS) improves maturation of porcine oocytes in vitro. Zygote 19(3):191–197.  https://doi.org/10.1017/S0967199410000663 CrossRefPubMedGoogle Scholar
  77. Huey S, Abuhamad A, Barroso G, Hsu MI, Kolm P, Mayer J, Oehninger S (1999) Perifollicular blood flow Doppler indices, but not follicular pO2, pCO2, or pH, predict oocyte developmental competence in in vitro fertilization. Fertil Steril 72(4):707–712CrossRefGoogle Scholar
  78. Hunter RHF (1996) Ovarian control of very low sperm/egg ratios at the commencement of mammalian fertilisation to avoid polyspermy. Mol Reprod Dev 44(3):417–422CrossRefGoogle Scholar
  79. Ideta A, Aoyagi Y, Tsuchiya K, Kamijima T, Nishimiya Y, Tsuda S (2013) A simple medium enables bovine embryos to be held for seven days at 4 degrees C. Sci Rep 3:1173.  https://doi.org/10.1038/srep01173 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Kang X, He W, Huang Y, Yu Q, Chen Y, Gao X, Sun X, Fan Y (2016) Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J Assist Reprod Genet 33(5):581–588.  https://doi.org/10.1007/s10815-016-0710-8 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Kassens A, Held E, Salilew-Wondim D, Sieme H, Wrenzycki C, Tesfaye D, Schellander K, Hoelker M (2015) Intrafollicular oocyte transfer (IFOT) of abattoir-derived and in vitro-matured oocytes results in viable blastocysts and birth of healthy calves. Biol Reprod 92(6):150.  https://doi.org/10.1095/biolreprod.114.124883 CrossRefPubMedGoogle Scholar
  82. Kenngott RA, Sinowatz F (2007) Prenatal development of the bovine oviduct. Anat Histol Embryol 36(4):272–283.  https://doi.org/10.1111/j.1439-0264.2006.00762.x CrossRefPubMedGoogle Scholar
  83. Keskintepe L, Brackett BG (1996) In vitro developmental competence of in vitro-matured bovine oocytes fertilized and cultured in completely defined media. Biol Reprod 55(2):333–339CrossRefGoogle Scholar
  84. Keskintepe L, Burnley CL, Brackett BG (1995) Production of viable bovine blastocysts in defined in-vitro conditions. Biol Reprod 52(6):1410–1417.  https://doi.org/10.1095/biolreprod52.6.1410 CrossRefPubMedGoogle Scholar
  85. Keskintepe L, Morton PC, Smith SE, Tucker MJ, Simplicio AA, Brackett BG (1997) Caprine blastocyst formation following intracytoplasmic sperm injection and defined culture. Zygote 5(3):261–265CrossRefGoogle Scholar
  86. Khazaei M, Aghaz F (2017) Reactive oxygen species generation and use of antioxidants during in vitro maturation of oocytes. Int J Fertil Steril 11(2):63–70.  https://doi.org/10.22074/ijfs.2017.4995 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Krisher RL (2013) In vivo and in vitro environmental effects on mammalian oocyte quality. Annu Rev Anim Biosci 1:393–417.  https://doi.org/10.1146/annurev-animal-031412-103647 CrossRefPubMedGoogle Scholar
  88. Krisher RL, Schoolcraft WB, Katz-Jaffe MG (2015) Omics as a window to view embryo viability. Fertil Steril 103(2):333–341.  https://doi.org/10.1016/j.fertnstert.2014.12.116 CrossRefPubMedGoogle Scholar
  89. Kruip TA, Boni R, Wurth YA, Roelofsen MW, Pieterse MC (1994) Potential use of ovum pick-up for embryo production and breeding in cattle. Theriogenology 42(4):675–684CrossRefGoogle Scholar
  90. Kruip TAM, Pieterse MC, Vanbeneden TH, Vos PLAM, Wurth YA, Taverne MAM (1991) A new method for bovine embryo production–a potential alternative to superovulation. Vet Rec 128(9):208–210CrossRefGoogle Scholar
  91. Kurome M, Geistlinger L, Kessler B, Zakhartchenko V, Klymiuk N, Wuensch A, Richter A, Baehr A, Kraehe K, Burkhardt K, Flisikowski K, Flisikowska T, Merkl C, Landmann M, Durkovic M, Tschukes A, Kraner S, Schindelhauer D, Petri T, Kind A, Nagashima H, Schnieke A, Zimmer R, Wolf E (2013) Factors influencing the efficiency of generating genetically engineered pigs by nuclear transfer: multi-factorial analysis of a large data set. BMC Biotechnol 13:43.  https://doi.org/10.1186/1472-6750-13-43 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Langbeen A, De Porte HF, Bartholomeus E, Leroy JL, Bols PE (2015) Bovine in vitro reproduction models can contribute to the development of (female) fertility preservation strategies. Theriogenology 84(4):477–489.  https://doi.org/10.1016/j.theriogenology.2015.04.009 CrossRefPubMedGoogle Scholar
  93. Lazzari G, Colleoni S, Lagutina I, Crotti G, Turini P, Tessaro I, Brunetti D, Duchi R, Galli C (2010) Short-term and long-term effects of embryo culture in the surrogate sheep oviduct versus in vitro culture for different domestic species. Theriogenology 73(6):748–757.  https://doi.org/10.1016/j.theriogenology.2009.08.001 CrossRefPubMedGoogle Scholar
  94. Lazzari G, Wrenzycki C, Herrmann D, Duchi R, Kruip T, Niemann H, Galli C (2002) Cellular and molecular deviations in bovine in vitro-produced embryos are related to the large offspring syndrome. Biol Reprod 67(3):767–775CrossRefGoogle Scholar
  95. Leemans B, Gadella BM, Stout TAE, Heras S, Smits K, Ferrer-Buitrago M, Claes E, Heindryckx B, De Vos WH, Nelis H, Hoogewijs M, Van Soom A (2015) Procaine induces cytokinesis in horse oocytes via a pH-dependent mechanism. Biol Reprod 93(1):23.  https://doi.org/10.1095/biolreprod.114.127423 CrossRefPubMedGoogle Scholar
  96. Leese HJ (2012) Metabolism of the preimplantation embryo: 40 years on. Reproduction 143(4):417–427.  https://doi.org/10.1530/REP-11-0484 CrossRefPubMedGoogle Scholar
  97. Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y, Sun Y, Bai Y, Songyang Z, Ma W, Zhou C, Huang J (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6(5):363–372.  https://doi.org/10.1007/s13238-015-0153-5 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Lindner GM, Wright RW Jr (1983) Bovine embryo morphology and evaluation. Theriogenology 20(4):407–416CrossRefGoogle Scholar
  99. Lonergan P, Fair T (2016) Maturation of oocytes in vitro. Annu Rev Anim Biosci 4(4):255–268.  https://doi.org/10.1146/annurev-animal-022114-110822 CrossRefPubMedGoogle Scholar
  100. Lonergan P, Fair T, Corcoran D, Evans AC (2006) Effect of culture environment on gene expression and developmental characteristics in IVF-derived embryos. Theriogenology 65(1):137–152.  https://doi.org/10.1016/j.theriogenology.2005.09.028 CrossRefPubMedGoogle Scholar
  101. Lonergan P, Fair T, Forde N, Rizos D (2016) Embryo development in dairy cattle. Theriogenology 86(1):270–277.  https://doi.org/10.1016/j.theriogenology.2016.04.040 CrossRefPubMedGoogle Scholar
  102. Looney CR, Lindsey BR, Gonseth CL, Johnson DL (1994) Commercial aspects of oocyte retrieval and in-vitro fertilization (Ivf) for embryo production in problem cows. Theriogenology 41(1):67–72.  https://doi.org/10.1016/S0093-691x(05)80050-0 CrossRefGoogle Scholar
  103. Lopera-Vasquez R, Hamdi M, Maillo V, Gutierrez-Adan A, Bermejo-Alvarez P, Ramirez MA, Yanez-Mo M, Rizos D (2017) Effect of bovine oviductal extracellular vesicles on embryo development and quality in vitro. Reproduction 153(4):461–470.  https://doi.org/10.1530/REP-16-0384 CrossRefPubMedGoogle Scholar
  104. Lopes AS, Wrenzycki C, Ramsing NB, Herrmann D, Niemann H, Lovendahl P, Greve T, Callesen H (2007) Respiration rates correlate with mRNA expression of G6PD and GLUT1 genes in individual bovine in vitro-produced blastocysts. Theriogenology 68(2):223–236.  https://doi.org/10.1016/j.theriogenology.2007.04.055 CrossRefPubMedGoogle Scholar
  105. Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, Koski A, Ji D, Hayama T, Ahmed R, Darby H, Van Dyken C, Li Y, Kang E, Park AR, Kim D, Kim ST, Gong J, Gu Y, Xu X, Battaglia D, Krieg SA, Lee DM, Wu DH, Wolf DP, Heitner SB, Belmonte JCI, Amato P, Kim JS, Kaul S, Mitalipov S (2017) Correction of a pathogenic gene mutation in human embryos. Nature 548(7668):413–419.  https://doi.org/10.1038/nature23305 CrossRefPubMedGoogle Scholar
  106. Malcuit C, Maserati M, Takahashi Y, Page R, Fissore RA (2006) Intracytoplasmic sperm injection in the bovine induces abnormal [Ca2+]i responses and oocyte activation. Reprod Fertil Dev 18(1–2):39–51CrossRefGoogle Scholar
  107. Mari G, Barbara M, Eleonora I, Stefano B (2005) Fertility in the mare after repeated transvaginal ultrasound-guided aspirations. Anim Reprod Sci 88(3–4):299–308.  https://doi.org/10.1016/j.anireprosci.2005.01.002 CrossRefPubMedGoogle Scholar
  108. Masuda M, Kuriki H, Komiyama Y, Nishikado H, Egawa H, Murata K (1987) Measurement of membrane fluidity of polymorphonuclear leukocytes by flow cytometry. J Immunol Methods 96(2):225–231CrossRefGoogle Scholar
  109. Mattioli M, Bacci ML, Galeati G, Seren E (1989) Developmental competence of pig oocytes matured and fertilized invitro. Theriogenology 31(6):1201–1207.  https://doi.org/10.1016/0093-691x(89)90089-7 CrossRefPubMedGoogle Scholar
  110. McLaughlin M, Telfer EE (2010) Oocyte development in bovine primordial follicles is promoted by activin and FSH within a two-step serum-free culture system. Reproduction 139(6):971–978.  https://doi.org/10.1530/REP-10-0025 CrossRefPubMedGoogle Scholar
  111. McPartlin LA, Suarez SS, Czaya CA, Hinrichs K, Bedford-Guaus SJ (2009) Hyperactivation of stallion sperm is required for successful in vitro fertilization of equine oocytes. Biol Reprod 81(1):199–206.  https://doi.org/10.1095/biolreprod.108.074880 CrossRefPubMedGoogle Scholar
  112. Menezo YJ, Herubel F (2002) Mouse and bovine models for human IVF. Reprod Biomed Online 4(2):170–175CrossRefGoogle Scholar
  113. Merton JS, Ask B, Onkundi DC, Mullaart E, Colenbrander B, Nielen M (2009) Genetic parameters for oocyte number and embryo production within a bovine ovum pick-up-in vitro production embryo-production program. Theriogenology 72(7):885–893.  https://doi.org/10.1016/j.theriogenology.2009.06.003 CrossRefPubMedGoogle Scholar
  114. Merton JS, de Roos AP, Mullaart E, de Ruigh L, Kaal L, Vos PL, Dieleman SJ (2003) Factors affecting oocyte quality and quantity in commercial application of embryo technologies in the cattle breeding industry. Theriogenology 59(2):651–674CrossRefGoogle Scholar
  115. Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829PubMedPubMedCentralGoogle Scholar
  116. Mianne J, Codner GF, Caulder A, Fell R, Hutchison M, King R, Stewart ME, Wells S, Teboul L (2017) Analysing the outcome of CRISPR-aided genome editing in embryos: screening, genotyping and quality control. Methods 121-122:68–76.  https://doi.org/10.1016/j.ymeth.2017.03.016 CrossRefPubMedGoogle Scholar
  117. Michael H, Ana K, Dessie SW, Harald S, Christine W, Dawit T, Christiane N, Karl S, Eva HH (2017) Birth of healthy calves after intra-follicular transfer (IFOT) of slaughterhouse derived immature bovine oocytes. Theriogenology 97:41–49.  https://doi.org/10.1016/j.theriogenology.2017.04.009 CrossRefGoogle Scholar
  118. Miles JR, McDaneld TG, Wiedmann RT, Cushman RA, Echternkamp SE, Vallet JL, Smith TP (2012) MicroRNA expression profile in bovine cumulus-oocyte complexes: possible role of let-7 and miR-106a in the development of bovine oocytes. Anim Reprod Sci 130(1–2):16–26.  https://doi.org/10.1016/j.anireprosci.2011.12.021 CrossRefPubMedGoogle Scholar
  119. Minami N, Bavister BD, Iritani A (1988) Development of hamster two-cell embryos in the isolated mouse oviduct in organ culture system. Gamete Res 19(3):235–240.  https://doi.org/10.1002/mrd.1120190303 CrossRefPubMedGoogle Scholar
  120. Mitalipov S, Wolf DP (2014) Clinical and ethical implications of mitochondrial gene transfer. Trends Endocrinol Metab 25(1):5–7.  https://doi.org/10.1016/j.tem.2013.09.001 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Monniaux D (2016) Driving folliculogenesis by the oocyte-somatic cell dialog: lessons from genetic models. Theriogenology 86(1):41–53.  https://doi.org/10.1016/j.theriogenology.2015.04.017 CrossRefPubMedGoogle Scholar
  122. Monniaux D, Clement F, Dalbes-Tran R, Estienne A, Fabre S, Mansanet C, Monget P (2014) The ovarian reserve of primordial follicles and the dynamic reserve of antral growing follicles: what is the link? Biol Reprod 90(4):85.  https://doi.org/10.1095/biolreprod.113.117077 CrossRefPubMedGoogle Scholar
  123. Morrell JM, Richter J, Martinsson G, Stuhtmann G, Hoogewijs M, Roels K, Dalin AM (2014) Pregnancy rates after artificial insemination with cooled stallion spermatozoa either with or without single layer centrifugation. Theriogenology 82(8):1102–1105.  https://doi.org/10.1016/j.theriogenology.2014.07.028 CrossRefPubMedGoogle Scholar
  124. Mugnier S, Dell'Aquila ME, Pelaez J, Douet C, Ambruosi B, De Santis T, Lacalandra GM, Lebos C, Sizaret PY, Delaleu B, Monget P, Mermillod P, Magistrini M, Meyers SA, Goudet G (2009) New insights into the mechanisms of fertilization: comparison of the fertilization steps, composition, and structure of the Zona Pellucida between horses and pigs. Biol Reprod 81(5):856–870.  https://doi.org/10.1095/biolreprod.109.077651 CrossRefPubMedGoogle Scholar
  125. Munoz M, Uyar A, Correia E, Diez C, Fernandez-Gonzalez A, Caamano JN, Trigal B, Carrocera S, Seli E, Gomez E (2014) Non-invasive assessment of embryonic sex in cattle by metabolic fingerprinting of in vitro culture medium. Metabolomics 10(3):443–451.  https://doi.org/10.1007/s11306-013-0587-9 CrossRefGoogle Scholar
  126. Niemann H, Petersen B (2016) The production of multi-transgenic pigs: update and perspectives for xenotransplantation. Transgenic Res 25(3):361–374.  https://doi.org/10.1007/s11248-016-9934-8 CrossRefPubMedGoogle Scholar
  127. Niemann H, Wrenzycki C (2000) Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development. Theriogenology 53(1):21–34CrossRefGoogle Scholar
  128. Oriol JG, Sharom FJ, Betteridge KJ (1993) Developmentally-regulated changes in the glycoproteins of the equine embryonic capsule. J Reprod Fertil 99(2):653–664CrossRefGoogle Scholar
  129. Palermo G, Joris H, Devroey P, Van Steirteghem AC (1992) Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 340(8810):17–18CrossRefGoogle Scholar
  130. Palmer E, Bezard J, Magistrini M, Duchamp G (1991) Invitro fertilization in the horse–a retrospective study. J Reprod Fertil 44:375–384Google Scholar
  131. Paramio MT, Izquierdo D (2014) Current status of in vitro embryo production in sheep and goats. Reprod Domest Anim 49:37–48.  https://doi.org/10.1111/rda.12334 CrossRefPubMedGoogle Scholar
  132. Paramio MT, Izquierdo D (2016) Recent advances in in vitro embryo production in small ruminants. Theriogenology 86(1):152–159.  https://doi.org/10.1016/j.theriogenology.2016.04.027 CrossRefPubMedGoogle Scholar
  133. Parrish JJ (2014) Bovine in vitro fertilization: in vitro oocyte maturation and sperm capacitation with heparin. Theriogenology 81(1):67–73.  https://doi.org/10.1016/j.theriogenology.2013.08.005 CrossRefPubMedGoogle Scholar
  134. Parrish JJ, Susko-Parrish JL, Leibfried-Rutledge ML, Critser ES, Eyestone WH, First NL (1986) Bovine in vitro fertilization with frozen-thawed semen. Theriogenology 25(4):591–600CrossRefGoogle Scholar
  135. Pavani KC, Alminana C, Wydooghe E, Catteeuw M, Ramirez MA, Mermillod P, Rizos D, Van Soom A (2016) Emerging role of extracellular vesicles in communication of preimplantation embryos in vitro. Reprod Fertil Dev 29(1):66–83.  https://doi.org/10.1071/RD16318 CrossRefPubMedGoogle Scholar
  136. Petersen B, Niemann H (2015) Molecular scissors and their application in genetically modified farm animals. Transgenic Res 24(3):381–396.  https://doi.org/10.1007/s11248-015-9862-z CrossRefPubMedGoogle Scholar
  137. Petters RM, Wells KD (1993) Culture of pig embryos. J Reprod Fertil 48:61–73Google Scholar
  138. Pieterse MC, Kappen KA, Kruip TAM, Taverne MAM (1988) Aspiration of bovine oocytes during trans-vaginal ultrasound scanning of the ovaries. Theriogenology 30(4):751–762.  https://doi.org/10.1016/0093-691x(88)90310-X CrossRefPubMedGoogle Scholar
  139. Pieterse MC, Vos PLAM, Kruip TAM, Wurth YA, Vanbeneden TH, Willemse AH, Taverne MAM (1991) Transvaginal ultrasound guided follicular aspiration of bovine oocytes. Theriogenology 35(4):857–861.  https://doi.org/10.1016/0093-691x(91)90426-E CrossRefPubMedGoogle Scholar
  140. Ponsart C, Le Bourhis D, Knijn H, Fritz S, Guyader-Joly C, Otter T, Lacaze S, Charreaux F, Schibler L, Dupassieux D, Mullaart E (2014) Reproductive technologies and genomic selection in dairy cattle. Reprod Fert Develop 26(1):12–21.  https://doi.org/10.1071/RD13328 CrossRefGoogle Scholar
  141. Pratt SL, Calcatera SM (2016) Expression of microRNA in male reproductive tissues and their role in male fertility. Reprod Fertil Dev 29(1):24–31.  https://doi.org/10.1071/RD16293 CrossRefPubMedGoogle Scholar
  142. Presicce GA, Jiang S, Simkin M, Zhang L, Looney CR, Godke RA, Yang XZ (1997) Age and hormonal dependence of acquisition of oocyte competence for embryogenesis in prepubertal calves. Biol Reprod 56(2):386–392.  https://doi.org/10.1095/biolreprod56.2.386 CrossRefPubMedGoogle Scholar
  143. Pribenszky C, Nilselid AM, Montag M (2017) Time-lapse culture with morphokinetic embryo selection improves pregnancy and live birth chances and reduces early pregnancy loss: a meta-analysis. Reprod Biomed Online 35(5):511–520.  https://doi.org/10.1016/j.rbmo.2017.06.022 CrossRefPubMedGoogle Scholar
  144. Proudfoot C, Carlson DF, Huddart R, Long CR, Pryor JH, King TJ, Lillico SG, Mileham AJ, McLaren DG, Whitelaw CB, Fahrenkrug SC (2015) Genome edited sheep and cattle. Transgenic Res 24(1):147–153.  https://doi.org/10.1007/s11248-014-9832-x CrossRefPubMedGoogle Scholar
  145. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383.  https://doi.org/10.1083/jcb.201211138 CrossRefPubMedPubMedCentralGoogle Scholar
  146. Rath D (1992) Experiments to improve invitro fertilization techniques for invivo-matured porcine oocytes. Theriogenology 37(4):885–896.  https://doi.org/10.1016/0093-691x(92)90050-2 CrossRefPubMedGoogle Scholar
  147. Ratto M, Gomez C, Berland M, Adams GP (2007) Effect of ovarian superstimulation on COC collection and maturation in alpacas. Anim Reprod Sci 97(3–4):246–256.  https://doi.org/10.1016/j.anireprosci.2006.02.002 CrossRefPubMedGoogle Scholar
  148. Reznichenko AS, Huyser C, Pepper MS (2016) Mitochondrial transfer: implications for assisted reproductive technologies. Appl Transl Genom 11:40–47.  https://doi.org/10.1016/j.atg.2016.10.001 CrossRefPubMedPubMedCentralGoogle Scholar
  149. Rizos D, Clemente M, Bermejo-Alvarez P, de La Fuente J, Lonergan P, Gutierrez-Adan A (2008) Consequences of in vitro culture conditions on embryo development and quality. Reprod Domest Anim 43(Suppl 4):44–50.  https://doi.org/10.1111/j.1439-0531.2008.01230.x CrossRefPubMedGoogle Scholar
  150. Rizos D, Ramirez MA, Pintado B, Lonergan P, Gutierrez-Adan A (2010) Culture of bovine embryos in intermediate host oviducts with emphasis on the isolated mouse oviduct. Theriogenology 73(6):777–785.  https://doi.org/10.1016/j.theriogenology.2009.10.001 CrossRefPubMedGoogle Scholar
  151. Roberts R, Franks S, Hardy K (2002) Culture environment modulates maturation and metabolism of human oocytes. Hum Reprod 17(11):2950–2956.  https://doi.org/10.1093/humrep/17.11.2950 CrossRefPubMedGoogle Scholar
  152. Rocha JC, Passalia F, Matos FD, Maserati MP Jr, Alves MF, Almeida TG, Cardoso BL, Basso AC, Nogueira MF (2016) Methods for assessing the quality of mammalian embryos: how far we are from the gold standard? JBRA Assist Reprod 20(3):150–158.  https://doi.org/10.5935/1518-0557.20160033 CrossRefPubMedPubMedCentralGoogle Scholar
  153. Romar R, Funahashi H, Coy P (2016) In vitro fertilization in pigs: new molecules and protocols to consider in the forthcoming years. Theriogenology 85(1):125–134.  https://doi.org/10.1016/j.theriogenology.2015.07.017 CrossRefPubMedGoogle Scholar
  154. Sanchez-Guijo A, Blaschka C, Hartmann MF, Wrenzycki C, Wudy SA (2016) Profiling of bile acids in bovine follicular fluid by fused-core-LC-MS/MS. J Steroid Biochem 162:117–125.  https://doi.org/10.1016/j.jsbmb.2016.02.020 CrossRefGoogle Scholar
  155. Santonocito M, Vento M, Guglielmino MR, Battaglia R, Wahlgren J, Ragusa M, Barbagallo D, Borzi P, Rizzari S, Maugeri M, Scollo P, Tatone C, Valadi H, Purrello M, Di Pietro C (2014) Molecular characterization of exosomes and their microRNA cargo in human follicular fluid: bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation. Fertil Steril 102(6):1751–1761 e1751.  https://doi.org/10.1016/j.fertnstert.2014.08.005 CrossRefPubMedGoogle Scholar
  156. Santos RR, Schoevers EJ, Roelen BA (2014) Usefulness of bovine and porcine IVM/IVF models for reproductive toxicology. Reprod Biol Endocrinol 12:117.  https://doi.org/10.1186/1477-7827-12-117 CrossRefPubMedPubMedCentralGoogle Scholar
  157. Sartori R, Monteiro PLJ, Wiltbank MC (2016) Endocrine and metabolic differences between Bos taurus and Bos indicus cows and implications for reproductive management. Anim Reprod 13(3):168–181.  https://doi.org/10.21451/1984-3143-AR868 CrossRefGoogle Scholar
  158. Scott RT Jr, Treff NR (2010) Assessing the reproductive competence of individual embryos: a proposal for the validation of new "-omics" technologies. Fertil Steril 94(3):791–794.  https://doi.org/10.1016/j.fertnstert.2010.03.041 CrossRefPubMedGoogle Scholar
  159. Sekhavati MH, Shadanloo F, Hosseini MS, Tahmoorespur M, Nasiri MR, Hajian M, Nasr-Esfahani MH (2012) Improved bovine ICSI outcomes by sperm selected after combined heparin-glutathione treatment. Cell Reprogram 14(4):295–304.  https://doi.org/10.1089/cell.2012.0014 CrossRefPubMedGoogle Scholar
  160. Shahbazi MN, Jedrusik A, Vuoristo S, Recher G, Hupalowska A, Bolton V, Fogarty NNM, Campbell A, Devito L, Ilic D, Khalaf Y, Niakan KK, Fishel S, Zernicka-Goetz M (2016) Self-organization of the human embryo in the absence of maternal tissues. Nat Cell Biol 18(6):700–708.  https://doi.org/10.1038/ncb3347 CrossRefPubMedPubMedCentralGoogle Scholar
  161. Shirazi A, Ostad-Hosseini S, Ahmadi E, Heidari B, Shams-Esfandabadi N (2009) In vitro developmental competence of ICSI-derived activated ovine embryos. Theriogenology 71(2):342–348.  https://doi.org/10.1016/j.theriogenology.2008.07.027 CrossRefPubMedGoogle Scholar
  162. Silva JR, van den Hurk R, Figueiredo JR (2016) Ovarian follicle development in vitro and oocyte competence: advances and challenges for farm animals. Domest Anim Endocrinol 55:123–135.  https://doi.org/10.1016/j.domaniend.2015.12.006 CrossRefPubMedGoogle Scholar
  163. da Silveira JC, Veeramachaneni DN, Winger QA, Carnevale EM, Bouma GJ (2012) Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biol Reprod 86(3):71.  https://doi.org/10.1095/biolreprod.111.093252 CrossRefPubMedGoogle Scholar
  164. Sinclair KD, Lunn LA, Kwong WY, Wonnacott K, Linforth RST, Craigon J (2008) Amino acid and fatty acid composition of follicular fluid as predictors of in-vitro embryo development. Reprod Biomed Online 16(6):859–868CrossRefGoogle Scholar
  165. Sirard MA (2016) Somatic environment and germinal differentiation in antral follicle: the effect of FSH withdrawal and basal LH on oocyte competence acquisition in cattle. Theriogenology 86(1):54–61.  https://doi.org/10.1016/j.theriogenology.2016.04.018 CrossRefPubMedGoogle Scholar
  166. Sohel MM, Hoelker M, Noferesti SS, Salilew-Wondim D, Tholen E, Looft C, Rings F, Uddin MJ, Spencer TE, Schellander K, Tesfaye D (2013) Exosomal and non-exosomal transport of extra-cellular microRNAs in follicular fluid: implications for bovine oocyte developmental competence. PLoS One 8(11):e78505.  https://doi.org/10.1371/journal.pone.0078505 CrossRefPubMedPubMedCentralGoogle Scholar
  167. Souza-Fabjan JMG, Locatelli Y, Duffard N, Corbin E, Touze JL, Perreau C, Beckers JF, Freitas VJF, Mermillod P (2014) In vitro embryo production in goats: slaughterhouse and laparoscopic ovum pick up-derived oocytes have different kinetics and requirements regarding maturation media. Theriogenology 81(8):1021–1031.  https://doi.org/10.1016/j.theriogenology.2014.01.023 CrossRefPubMedGoogle Scholar
  168. Spricigo JF, Sena Netto SB, Muterlle CV, Rodrigues Sde A, Leme LO, Guimaraes AL, Caixeta FM, Franco MM, Pivato I, Dode MA (2016) Intrafollicular transfer of fresh and vitrified immature bovine oocytes. Theriogenology 86(8):2054–2062.  https://doi.org/10.1016/j.theriogenology.2016.07.003 CrossRefPubMedGoogle Scholar
  169. Squires EL (1996) Maturation and fertilization of equine oocytes. Vet Clin N Am-Equine 12(1):31CrossRefGoogle Scholar
  170. Stock KF, Reents R (2013) Genomic selection: status in different species and challenges for breeding. Reprod Domest Anim 48(Suppl 1):2–10.  https://doi.org/10.1111/rda.12201 CrossRefPubMedGoogle Scholar
  171. Stringfellow DA, Givens MD (2000) Infectious agents in bovine embryo production: hazards and solutions. Theriogenology 53(1):85–94CrossRefGoogle Scholar
  172. Sturmey RG, Bermejo-Alvarez P, Gutierrez-Adan A, Rizos D, Leese HJ, Lonergan P (2010) Amino acid metabolism of bovine blastocysts: a biomarker of sex and viability. Mol Reprod Dev 77(3):285–296.  https://doi.org/10.1002/mrd.21145 CrossRefPubMedGoogle Scholar
  173. Sutton ML, Gilchrist RB, Thompson JG (2003) Effects of in-vivo and in-vitro environments on the metabolism of the cumulus-oocyte complex and its influence on oocyte developmental capacity. Hum Reprod Update 9(1):35–48.  https://doi.org/10.1093/humupd/dmg009 CrossRefPubMedGoogle Scholar
  174. Suzuki T, Asami M, Hoffmann M, Lu X, Guzvic M, Klein CA, Perry AC (2016) Mice produced by mitotic reprogramming of sperm injected into haploid parthenogenotes. Nat Commun 7:12676.  https://doi.org/10.1038/ncomms12676 CrossRefPubMedPubMedCentralGoogle Scholar
  175. Tervit HR, Whittingham DG, Rowson LE (1972) Successful culture in vitro of sheep and cattle ova. J Reprod Fertil 30(3):493–497CrossRefGoogle Scholar
  176. Tesfaye D, Salilew-Wondim D, Gebremedhn S, Sohel MM, Pandey HO, Hoelker M, Schellander K (2016) Potential role of microRNAs in mammalian female fertility. Reprod Fertil Dev 29(1):8–23.  https://doi.org/10.1071/RD16266 CrossRefPubMedGoogle Scholar
  177. Thys M, Vandaele L, Morrell JM, Mestach J, Van Soom A, Hoogewijs M, Rodriguez-Martinez H (2009) In vitro fertilizing capacity of frozen-thawed bull spermatozoa selected by single-layer (Glycidoxypropyltrimethoxysilane) Silane-coated silica colloidal centrifugation. Reprod Domest Anim 44(3):390–394.  https://doi.org/10.1111/j.1439-0531.2008.01081.x CrossRefPubMedGoogle Scholar
  178. Tibary A, Anouassi A, Khatir H (2005) Update on reproductive biotechnologies in small ruminants and camelids. Theriogenology 64(3):618–638.  https://doi.org/10.1016/j.theriogenology.2005.05.016 CrossRefPubMedGoogle Scholar
  179. Tibary A, Vaughan J (2006) Reproductive physiology and infertility in male south American camelids: a review and clinical observations. Small Ruminant Res 61(2–3):283–298.  https://doi.org/10.1016/j.smallrumres.2005.07.018 CrossRefGoogle Scholar
  180. Trasorras VL, Chaves MG, Miragaya MH, Pinto M, Rutter B, Flores M, Aguero A (2009) Effect of eCG superstimulation and buserelin on cumulus-oocyte complexes recovery and maturation in llamas (Lama glama). Reprod Domest Anim 44(3):359–364.  https://doi.org/10.1111/j.1439-0531.2007.00972.x CrossRefPubMedGoogle Scholar
  181. Trasorras V, Chaves MG, Neild D, Gambarotta M, Aba M, Aguero A (2010) Embryo transfer technique: factors affecting the viability of the corpus luteum in llamas. Anim Reprod Sci 121(3–4):279–285.  https://doi.org/10.1016/j.anireprosci.2010.06.004 CrossRefPubMedGoogle Scholar
  182. Trasorras V, Giuliano S, Miragaya M (2013) In vitro production of embryos in south American camelids. Anim Reprod Sci 136(3):187–193.  https://doi.org/10.1016/j.anireprosci.2012.10.009 CrossRefPubMedGoogle Scholar
  183. Urrego R, Rodriguez-Osorio N, Niemann H (2014) Epigenetic disorders and altered gene expression after use of assisted reproductive technologies in domestic cattle. Epigenetics 9(6):803–815.  https://doi.org/10.4161/epi.28711 CrossRefPubMedPubMedCentralGoogle Scholar
  184. Van Soom A, Mateusen B, Leroy J, De Kruif A (2003) Assessment of mammalian embryo quality: what can we learn from embryo morphology? Reprod Biomed Online 7(6):664–670CrossRefGoogle Scholar
  185. van Wagtendonk-de Leeuw AM, Mullaart E, de Roos APW, Merton JS, den Daas JHG, Kemp B, de Ruigh L (2000) Effects of different reproduction techniques: AI, MOET or IVP, on health and welfare of bovine offspring. Theriogenology 53(2):575–597.  https://doi.org/10.1016/S0093-691x(99)00259-9 CrossRefPubMedGoogle Scholar
  186. Vejlsted M, Du Y, Vajta G, Maddox-Hyttel P (2006) Post-hatching development of the porcine and bovine embryo--defining criteria for expected development in vivo and in vitro. Theriogenology 65(1):153–165.  https://doi.org/10.1016/j.theriogenology.2005.09.021 CrossRefPubMedGoogle Scholar
  187. Viana JHM, Siqueira LGB, Palhao MP, Camargo LSA (2012) Features and perspectives of the Brazilian in vitro embryo industry. Anim Reprod 9(1):12–18Google Scholar
  188. Wetscher F, Havlicek V, Huber T, Gilles M, Tesfaye D, Griese J, Wimmers K, Schellander K, Muller M, Brem G, Besenfelder U (2005) Intrafallopian transfer of gametes and early stage embryos for in vivo culture in cattle. Theriogenology 64(1):30–40.  https://doi.org/10.1016/j.theriogenology.2004.11.018 CrossRefPubMedGoogle Scholar
  189. Wheeler MB, Rubessa M (2017) Integration of microfluidics in animal in vitro embryo production. Mol Hum Reprod 23(4):248–256.  https://doi.org/10.1093/molehr/gaw048 CrossRefPubMedGoogle Scholar
  190. Wheeler MB, Walters EM, Beebe DJ (2007) Toward culture of single gametes: the development of microfluidic platforms for assisted reproduction. Theriogenology 68:S178–S189.  https://doi.org/10.1016/i.theriogenology.2007.04.042 CrossRefPubMedGoogle Scholar
  191. Wrenzycki C, Herrmann D, Lucas-Hahn A, Korsawe K, Lemme E, Niemann H (2005) Messenger RNA expression patterns in bovine embryos derived from in vitro procedures and their implications for development. Reprod Fertil Dev 17(1–2):23–35CrossRefGoogle Scholar
  192. Wrenzycki C, Herrmann D, Niemann H (2007) Messenger RNA in oocytes and embryos in relation to embryo viability. Theriogenology 68:S77–S83.  https://doi.org/10.1016/j.theriogenology.2007.04.028 CrossRefPubMedGoogle Scholar
  193. Wrenzycki C, Stinshoff H (2013) Maturation environment and impact on subsequent developmental competence of bovine oocytes. Reprod Domest Anim 48:38–43.  https://doi.org/10.1111/rda.12204 CrossRefPubMedGoogle Scholar
  194. Young LE, Sinclair KD, Wilmut I (1998) Large offspring syndrome in cattle and sheep. Rev Reprod 3(3):155–163CrossRefGoogle Scholar
  195. Zeng F, Huang F, Guo J, Hu X, Liu C, Wang H (2015) Emerging methods to generate artificial germ cells from stem cells. Biol Reprod 92(4):89.  https://doi.org/10.1095/biolreprod.114.124800 CrossRefPubMedGoogle Scholar
  196. Zhang J, Liu H, Luo S, Lu Z, Chavez-Badiola A, Liu Z, Yang M, Merhi Z, Silber SJ, Munne S, Konstantinidis M, Wells D, Tan JJ, Huang T (2017) Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reprod Biomed Online 34(4):361–368.  https://doi.org/10.1016/j.rbmo.2017.01.013 CrossRefPubMedGoogle Scholar
  197. Zhang J, Zhuang G, Zeng Y, Grifo J, Acosta C, Shu Y, Liu H (2016) Pregnancy derived from human zygote pronuclear transfer in a patient who had arrested embryos after IVF. Reprod Biomed Online 33(4):529–533.  https://doi.org/10.1016/j.rbmo.2016.07.008 CrossRefPubMedGoogle Scholar
  198. Zischewski J, Fischer R, Bortesi L (2017) Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol Adv 35(1):95–104.  https://doi.org/10.1016/j.biotechadv.2016.12.003 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Clinic for Veterinary Obstetrics, Gynecology and Andrology of Large and Small Animals; Chair of Molecular Reproductive Medicine, Faculty of Veterinary MedicineJustus-Liebig-University GiessenGiessenGermany

Personalised recommendations