Biomass and Bioenergy

  • Klaus LorenzEmail author
  • Rattan Lal


Bioenergy from biomass can replace fossil fuels in the production of heat, electricity, and liquid fuels for transport but the potential contribution is in need of further research and objective discussions. Biomass can also provide feedstock for the chemical industry to replace petroleum. Feedstock for this purpose are major plant oil crops such as oil palm (Elaeis guineensis or E. oleifera), soybean [Glycine max (L.) Merr.], rapeseed (Brassica napus L.), and sunflower (Helianthus annuus L.). In 2015, traditional biomass accounted for 9.1%, and biofuels for transportation accounted for 0.8% of the global final energy consumption. In principle, biomass could meet up to one-third of the projected global energy demand in 2050 by bringing new land under cultivation and/or increasing productivity. However, aside physically possible, socially acceptable biomass potential scenarios must be assessed. The main feedstocks for generating heat, electricity, or gaseous, liquid, and solid fuels are forestry, agricultural and livestock residues, short-rotation forest plantations, energy crops, and the organic component of municipal residues and wastes. Traditional biomass such as fuelwood, charcoal, and animal dung is source for about 99% of all bioenergy. Of minor importance is ‘modern’ biomass such as sugar, grain, and vegetable oil crops for the production of liquid biofuels. However, in the future the bulk of liquid biofuels may be produced from lignocellulosic crops cultivated on marginal, degraded, and surplus agricultural land. Dedicated lignocellulosic energy crops include perennial plants such as switchgrass (Panicum virgatum L.), Miscanthus x giganteus, sugarcane (Saccharum spp.), Agave spp., and short-rotation woody crops such as hybrid poplar (Populus spp.) and willow (Salix spp.). Compared to conventional crops such as corn (Zea mays L.), energy crops are less depending on favorable climatic and soil conditions and require fewer inputs of agrochemicals. Thus, using energy crops would reduce the direct competition for land with food production and ecosystem services, and potentially have lower net energy and greenhouse gas (GHG) effects. However, the carbon costs of dedicating land to bioenergy will exceed the benefits. For example, conversion of native ecosystems for bioenergy often results in soil organic carbon (SOC) loss. The long-term potential of energy crops depends largely on land availability, choice of crop species, improvements by biotechnology, water availability, and effects of climate change. Aside from the dedicated bioenergy plantations, other potential feedstocks are the large volumes of unused organic residues and wastes but it is unclear whether their share can be increased. However, agricultural residues are also required on site to maintain SOC stocks, soil health, and agricultural productivity, and to reduce soil erosion. The SOC sequestration may be the key component in determining the GHG reduction potential of biofuels compared to fossil fuels. Life cycle assessment (LCA) is a widely used approach to assess the GHG balance of biomass production. Removing 25 and 100% of corn residues, for example, jeopardizes agroecosystem services and causes losses of up to 3 and up to 8 Mg SOC ha−1 in 0–30 cm soil depth after 10 years, respectively. In comparison, SOC accumulates in the top 30 cm under perennial grasses at rates of up to 1 Mg SOC ha−1 yr−1. Thus, more intense harvest for bioenergy adversely affects the SOC stock. Also, producing energy crop feedstock by converting previously uncultivated land will cause a reduction in the SOC stock. Otherwise, adding residues from forest harvest, processing, and after end use may be beneficial to the SOC stock compared to establishing woody crop plantations. Sugarcane, perennial grasses, and trees can be cultivated sustainably for bioenergy but estimates for the potential of global bioenergy plantations when environmental and agricultural constraints are taken into account vary widely. Specifically, long-term, large-scale biomass cultivation plots, in particular, of switchgrass and Miscanthus x giganteus are scanty. While biofuels and, in particular, liquid biofuels will offset only a modest share in fossil energy use over the next decade, the impacts on agriculture and food security may be drastic. This chapter begins with a section about biomass as feedstock alternative to petroleum. Then, agroecosystem land use and management types for producing traditional and energy crop feedstocks are discussed with a focus on non-woody plants. The chapter concludes with a section about the effects of agricultural biomass production systems for bioenergy and biofuel on SOC sequestration. Additional information about the potential of woody biomass from agroforestry and plantations as feedstock for bioenergy can be found elsewhere (e.g., Buchholz et al. 2016; Lorenz and Lal 2010).


Plant oil crops Traditional biomass Biofuels Dedicated energy crops Crop residues Carbon debt Life cycle assessment 


  1. Albanito F, Beringer T, Corstanje R, Poulter B, Stephenson A, Zawadzka J, Smith P (2016) Carbon implications of converting cropland to bioenergy crops or forest for climate mitigation: a global assessment. GCB Bioenerg 8:81–95CrossRefGoogle Scholar
  2. Amougou N, Bertrand I, Machet JM, Recous S (2011) Quality and decomposition in soil of rhizome, root and senescent leaf from Miscanthus x giganteus, as affected by harvest date and N fertilization. Plant Soil 338:83–97CrossRefGoogle Scholar
  3. Anderson K (2015) Talks in the city of light generate more heat. Nature 528:437PubMedCrossRefGoogle Scholar
  4. Anderson-Teixeira KJ, Davis SC, Masters MD, DeLucia EH (2009) Changes in soil organic carbon under biofuel crops. GCB Bioenergy 1:75–96CrossRefGoogle Scholar
  5. Aro EM (2016) From first generation biofuels to advanced solar biofuels. Ambio 45(Suppl. 1):S24–S31. Scholar
  6. Arrouays D, Balesdent J, Germon J, Jayet P, Soussana J, Stengel P (2002) Stocker du carbone dans les sols agricoles de France? Expertise scientifique collective. Rapport d’expertise re´ alise´ par INRA a` la demande du Ministe`re de l’Ecologie et du De´veloppement Durable. In: Contribution a` la lutte contre l’effet de serre. Paris, France: INRA; 2002Google Scholar
  7. Arvizu D, Bruckner T, Edenhofer O, Estefen S, Faaij A, Fischedick M, Hiriart G, Hohmeyer O, Hollands KGT, Huckerby J, Kadner S, Killingtveit Å, Kumar A, Lewis A, Lucon O, Matschoss P, Maurice L, Mirza M, Mitchell C, Moomaw W, Moreira J, Nilsson LJ, Nyboer J, Pichs-Madruga R, Sathaye J, Sawin J, Schaeffer R, Schei T, Schlömer S, Seyboth K, Sims R, Sinden G, Sokona Y, von Stechow C, Steckel J, Verbruggen A, Wiser R, Yamba F, Zwickel T (2011) Technical summary. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  8. Azar C (2011) Biomass for energy: a dream come true. or a nightmare? WIREs Clim Change 2:309–323CrossRefGoogle Scholar
  9. Balagopal B, Paranikas P, Rose J (2010) What’s next for alternative energy?. The Boston Consulting Group Inc., Boston, MAGoogle Scholar
  10. Bartle JR, Abadi A (2010) Toward sustainable production of second generation bioenergy feedstocks. Energy Fuels 24:2–9CrossRefGoogle Scholar
  11. Bauen A, Berndes G, Junginger M, Londo M, Vuille F (2009) Bioenergy—a sustainable and reliable energy source. A review of status and prospects. IEA Bioenergy: ExCo:2009:06Google Scholar
  12. Beer T, Grant T, Campbell PK (2007) The greenhouse and air quality emissions of biodiesel blends in Australia. CSIROGoogle Scholar
  13. Beniston JW, Shipitalo MJ, Lal R et al (2015) Carbon and macronutrient losses during accelerated erosion under different tillage and residue management. Eur J Soil Sci 66:218–225. Scholar
  14. Benjamin JG, Halvorson AD, Nielsen DC, Mikha MM (2010) Crop management effects on crop residue production and changes in soil organic carbon in the central Great Plains. Agron J 102:990–997CrossRefGoogle Scholar
  15. Beringer T, Lucht W, Schaphoff S (2011) Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenerg 3:299–312CrossRefGoogle Scholar
  16. Bessou C, Ferchaud F, Gabrielle B, Mary B (2011) Biofuels, greenhouse gases and climate change. A review. Agron Sustain Dev 31:1–79CrossRefGoogle Scholar
  17. Blanco-Canqui H, Mitchell RB, Jin VL, Schmer MR, Eskridge KM (2017) Perennial warm-season grasses for producing biofuel and enhancing soil properties: an alternative to corn residue removal. GCB Bioenerg 9:1510–1521. Scholar
  18. Bonsch M, Humpenöder F, Popp A, Bodirsky B, Dietrich JP, Rolinski Biewald A, Lotze-Campen H, Weindl I, Gerten D, Stevanovic M (2016) Trade-offs between land and water requirements for large-scale bioenergy production. GCB Bioenerg 8:11–24CrossRefGoogle Scholar
  19. Borland AM, Griffiths H, Hartwell J, Smith JAC (2009) Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. J Exp Bot 60:2879–2896CrossRefPubMedGoogle Scholar
  20. Bourgis F, Kilaru A, Cao X, Ngando-Ebongue G-F, Drira N, Ohlrogge JB, Arondel V (2011) Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. Proc Natl Acad Sci USA 108:12527–12532PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bouwman AF, Van Grinsven JJM, Eickhout B (2010) Consequences of the cultivation of energy crops for the global nitrogen cycle. Ecol Appl 20:101–109PubMedCrossRefGoogle Scholar
  22. Bowyer C (2010) Anticipated indirect land-use change associated with expanded use of biofuels and bioliquids in the EU—an analysis of the national renewable energy action plans.
  23. Brandão M, Milà i Canals L, Clift R (2011) Soil organic carbon changes in the cultivation of energy crops: implications for GHG balances and soil quality for use in LCA. Biomass Bioenerg 35:2323–2336CrossRefGoogle Scholar
  24. Buchholz T, Hurteau MD, Gunn J, Saah D (2016) A global meta-analysis of forest bioenergy greenhouse gas emission accounting studies. GCB Bioenerg 8:281–289CrossRefGoogle Scholar
  25. Campbell CA, McConkey BG, Gameda S, Izaurralde RC, Liang BC, Zentner RP, Sabourin D (2002) Efficiencies of conversion of residue C to soil C. In: Kimble JM, Lal R, Follett RF (eds) Agricultural practices and policies for carbon sequestration in soil. CRC Press, Boca Raton, FL, pp 305–314Google Scholar
  26. Carlson KM, Heilmayr R, Gibbs HK et al (2018) Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc Natl Acad Sci USA 115:121–126PubMedCrossRefGoogle Scholar
  27. Carlsson AS (2009) Plant oils as feedstock alternatives to petroleum—a short survey of potential oil crop platforms. Biochimie 91:665–670PubMedCrossRefGoogle Scholar
  28. Carvalho JLN, Hudiburg TW, Franco HCJ, Delucia EH (2017) Contribution of above- and belowground bioenergy crop residues to soil carbon. GCBBioenerg 9:1333–1343. Scholar
  29. Cayuela ML, Oenema O, Kuikman PJ, Bakker RR, van Groenigen JW (2010) Bioenergy by-products as soil amendments? Implications for carbon sequestration and greenhouse gas emissions. GCB Bioenerg 2:201–213Google Scholar
  30. Ceja-Navarro JA, Rivera-Orduña FN, Patiño-Zúñiga L, Vila-Sanjurjo A, Crossa J, Govaerts B, Dendooven L (2010) Phylogenetic and multivariate analyses to determine the effects of different tillage and residue management practices on soil bacterial communities. Appl Environ Microbiol 76:3685–3691PubMedPubMedCentralCrossRefGoogle Scholar
  31. Chaplin-Kramer R, Sim S, Hamel P et al (2017) Life cycle assessment needs predictive spatial modelling for biodiversity and ecosystem services. Nat Commun 8:15065. Scholar
  32. Chase LDC, Henson IE (2010) A detailed greenhouse gas budget for palm oil production. Int J Agric Sustain 8:199–214CrossRefGoogle Scholar
  33. Ciais P, Wattenbach M, Vuichard N, Smith P, Piao SL, Don A, Luyssaert S, Janssens IA, Bondeau A, Dechow R, Leip A, Smith PC, Beer C, Van DerWerf GR, Gervois S, Van Oost K, Tomelleri E, Freibauer A, Schulze E-D, Synthesis Team CARBOEUROPE (2010) The European carbon balance. Part 2: croplands. Glob Change Biol 16:1409–1428CrossRefGoogle Scholar
  34. Creutzig F (2016) Economic and ecological views on climate change mitigation with bioenergy and negative emissions. GCB Bioenerg 8:4–10CrossRefGoogle Scholar
  35. Creutzig F, Ravindranath NH, Berndes G, Bolwig S, Bright R, Cherubini F, Chum H, Corbera E, Delucchi M, Faaij A, Fargione J, Haberl H, Heath G, Luconi O, Plevin R, Popp A, Robledo-Abad C, Rose S, Smith P, Stromman A, Suh S, Masera O (2015) Bioenergy and climate change mitigation: an assessment. GCB Bioenerg 7:916–944CrossRefGoogle Scholar
  36. Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8:389–395CrossRefGoogle Scholar
  37. Daioglou V, Stehfest E, Wicke B, Faaij AC, Van Vuuren DP (2016) Projections of the availability and cost of residues from agriculture and forestry. GCB Bioenerg 8:456–470CrossRefGoogle Scholar
  38. Daioglou V, Wicke B, Faaij AC, Van Vuuren DP (2015) Competing uses of biomass for energy and chemicals: implications for long-term global CO2 mitigation potential. GCB Bioenerg 7:1321–1334CrossRefGoogle Scholar
  39. Dale BE, Bals BD, Kim S, Eranki P (2010) Biofuels done right: land efficient animal feeds enable large environmental and energy benefits. Environ Sci Technol 44:8385–8389PubMedCrossRefGoogle Scholar
  40. Dale VH, Fl Kline, Wright LL, Perlack RD, Dowing M, Graham RL (2011) Interactions among bioenergy feedstock choices, landscape dynamics, and land use. Ecol Appl 21:1039–1054PubMedCrossRefGoogle Scholar
  41. Daly C, Halbleib MD, Hannaway DB, Eaton LM (2018) Environmental limitation mapping of potential biomass resources across the conterminous United States. GCB Bioenerg. Scholar
  42. Davis SC, Dohleman FG, Long SP (2011) The global potential for Agave as a biofuel feedstock. GCB Bioenergy 3:68–78CrossRefGoogle Scholar
  43. Davis SC, Parton WJ, Dohleman FG, Smith CM, Del Grosso S, Kent AD, DeLucia EH (2010) Comparative biogeochemical cycles of bioenergy crops reveal nitrogen-fixation and low greenhouse gas emissions in a Miscanthus x giganteus agro-ecosystem. Ecosystems 13:144–156CrossRefGoogle Scholar
  44. De Gorter H, Drabik G (2012) The effect of biofuel policies on food grain commodity prices. Biofuels 3:21–24CrossRefGoogle Scholar
  45. DeCicco (2017) Author’s response to commentary on “Carbon balance effects of U.S. biofuel production and use”. Clim Chang 144:123–129.
  46. DeCicco JM, Liu DY, Heo J et al (2016) Carbon balance effects of U.S. biofuel production and use. Clim Chang 138:667–680CrossRefGoogle Scholar
  47. De Kleine R, Wallington TJ, Anderson JE, Kim HC (2017) Commentary on “Carbon balance effects of U.S. biofuel production and use” by DeCicco et al. (2016). Clim Chang 144:111–119.
  48. Deininger K (2011) Challenges posed by the new wave of farmland investment. J Peasant Stud 38:217–247CrossRefGoogle Scholar
  49. De Vries SC, Van de Ven GWJ, Van Ittersum MK, Giller KE (2010) Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques. Biomass Bioenerg 34:588–601CrossRefGoogle Scholar
  50. Djomo SN, Ceulemans R (2012) A comparative analysis of the carbon intensity of biofuels caused by land use changes. GCB Bioenerg 4:392–407. Scholar
  51. Dohleman FG, Long SP (2009) More productive than maize in the Midwest: how does Miscanthus do it? Plant Physiol 150:2104–2115PubMedPubMedCentralCrossRefGoogle Scholar
  52. Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis. Glob Change Biol 17:1658–1670CrossRefGoogle Scholar
  53. Dondini M, Hastings A, Saiz G, Jones MB, Smith P (2009) The potential of Miscanthus to sequester carbon in soils: comparing field measurements in Carlow, Ireland to model predictions. GCB Bioenergy 1:413–425CrossRefGoogle Scholar
  54. Dornburg V, van Vuuren D, van de Ven G, Langeveld H, Meeusen M, Banse M, van Oorschot M, Ros J, van den Born GJ, Aiking H, Londo M, Mozaffarian H, Verweij P, Lyseng E, Faaij A (2010) Bioenergy revisited: key factors in global potentials of bioenergy. Energy Environ Sci 3:258–267CrossRefGoogle Scholar
  55. Du Z, Ren T, Hu C (2010) Tillage and residue removal effects on soil carbon and nitrogen storage in the North China Plain. Soil Sci Soc Am J 74:196–202CrossRefGoogle Scholar
  56. Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Arvizu D, Bruckner T, Christensen J, Devernay J-M, Faaij A, Fischedick M, Goldstein B, Hansen G, Huckerby J, Jäger-Waldau A, Kadner S, Kammen D, Krey V, Kumar A, Lewis A, Lucon O, Matschoss P, Maurice L, Mitchell C, Moomaw W, Moreira J, Nadai A, Nilsson LJ, Nyboer J, Rahman A, Sathaye J, Sawin J, Schaeffer R, Schei T, Schlömer S, Sims R, Verbruggen A, von Stechow C, Urama K, Wiser R, Yamba F, Zwickel T (2011) Summary for policymakers. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USACrossRefGoogle Scholar
  57. Erisman JW, van Grinsven H, Leip A, Mosier A, Bleeker A (2010) Nitrogen and biofuels; an overview of the current state of knowledge. Nutr Cycl Agroecosyst 86:211–223CrossRefGoogle Scholar
  58. FAO (2008) Forests and energy. FAO Forestry paper 154. FAO, RomeGoogle Scholar
  59. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238CrossRefGoogle Scholar
  60. Ferchaud F, Vitte G, Mary B (2016) Changes in soil carbon stocks under perennial and annual bioenergy crops. GCB Bioenerg 8:290–306CrossRefGoogle Scholar
  61. Field CB, Campbell JE, Lobell DB (2008) Biomass energy: the scale of the potential resource. Trends Ecol Evol 23:65–72PubMedCrossRefGoogle Scholar
  62. Finkbeiner M (2014) Indirect land use change—help beyond the hype? Biomass Bioenerg 62:218–221CrossRefGoogle Scholar
  63. Fischer G, Prieler S, Velthuizen H, Berndes G, Faaij A, Londo M, de Wit M (2010) Biofuel production potentials in Europe: sustainable use of cultivated land and pastures, part II: land use scenarios. Biomass Bioenerg 34:173–187CrossRefGoogle Scholar
  64. Franzluebbers AJ (2015) Farming strategies to fuel bioenergy demands and facilitate essential soil services. Geoderma 259–260:251–258CrossRefGoogle Scholar
  65. Frazão LA, Paustian K, Cerri CEP, Cerri CC (2014) Soil carbon stocks under oil palm plantations in Bahia State, Brazil. Biomass Bioenerg 62:1–7CrossRefGoogle Scholar
  66. Fritsche UR, Sims REH, Monti A (2010) Direct and indirect land-use competition issues for energy crops and their sustainable production—an overview. Biofuels Bioprod Bioref 4:692–704CrossRefGoogle Scholar
  67. Galdos MV, Cerri CC, Lal R, Bernoux M, Feigl B, Cerri CEP (2010) Net greenhouse gas fluxes in Brazilian ethanol production systems. GCB Bioenerg 2:37–44CrossRefGoogle Scholar
  68. Gasparatos A, Stromberg P, Takeuchi K (2011) Biofuels, ecosystem services and human wellbeing: putting biofuels in the ecosystem services narrative. Agric Ecosyst Environ 142:111–128CrossRefGoogle Scholar
  69. Gauder M, Billen N, Zikeli S et al (2016) Soil carbon stocks in different bioenergy cropping systems including subsoil. Soil Till Res 155:308–317CrossRefGoogle Scholar
  70. GBEP (Global Bioenergy Partnership) (2011) GBEP Sustainability indicators, May 20, 2011. FAO/GBEP, RomeGoogle Scholar
  71. Gelfand I, Zenone T, Jasrotia P, Chen J, Hamilton SK, Robertson GP (2011) Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production. Proc Natl Acad Sci USA 108:13864–13869PubMedPubMedCentralCrossRefGoogle Scholar
  72. Georgescu M, Lobell DB, Field CB (2011) Direct climate effects of perennial bioenergy crops in the United States. Proc Natl Acad Sci USA 108:4307–4312PubMedPubMedCentralCrossRefGoogle Scholar
  73. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818CrossRefGoogle Scholar
  74. Goetz A, German L, Weigelt J (2017) Scaling up biofuels? A critical look at expectations, performance and governance. Energ Pol in pressCrossRefGoogle Scholar
  75. Gold S (2011) Bio-energy supply chains and stakeholders. Mitig Adapt Strateg Glob Change 16:439–462CrossRefGoogle Scholar
  76. Gollany HT, Novak JM, Liang Y, Albrecht SL, Rickman RW, Follett RF, Wilhelm WW, Hunt PG (2010) Simulating soil organic carbon dynamics with residue removal using the CQESTR model. Soil Sci Soc Am J 74:372–383CrossRefGoogle Scholar
  77. Gollany HT, Rickman RW, Liang Y, Albrecht SL, Machado S, Kang S (2011) Predicting agricultural management influence on long-term soil organic carbon dynamics: implications for biofuel production. Agron J 103:234–246CrossRefGoogle Scholar
  78. Goodrick I, Nelson PN, Banabas M, Wurster CM, Bird MI (2015) Soil carbon balance following conversion of grassland to oil palm. GCB Bioenerg 7:263–272CrossRefGoogle Scholar
  79. Graham RL, Nelson R, Sheehan J, Perlack RD, Wright LL (2007) Current and potential U.S. corn stover supplies. Agron J 99:1–11CrossRefGoogle Scholar
  80. Gregg JS, Izaurralde RC (2010) Effect of crop residue harvest on long-term crop yield, soil erosion and nutrient balance: trade-offs for a sustainable bioenergy feedstock. Biofuels 1:69–83CrossRefGoogle Scholar
  81. Gregg JS, Smith SJ (2010) Global and regional potential for bioenergy from agricultural and forestry residue biomass. Mitig Adapt Strateg Glob Change 15:241–262CrossRefGoogle Scholar
  82. Hall CAS, Benemann JR (2011) Oil from algae? Bioscience 61:741–742CrossRefGoogle Scholar
  83. Hambrick W, Jungjohann A, Chiu A, Flynn H (2010) Beyond biofuels: renewable energy opportunities for US farmers. Heinrich Böll Stiftung.
  84. Han FX, King RL, Lindner JS, Yu T-Y, Durbha SS, Younan NH, Monts DL, Su Y, Luthe JC, Plodine MJ (2011) Nutrient fertilizer requirements for sustainable biomass supply to meet U.S. bioenergy goal. Biomass Bioenerg 35:253–262CrossRefGoogle Scholar
  85. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103:11206–11210PubMedPubMedCentralCrossRefGoogle Scholar
  86. Hillmyer MA (2017) The promise of plastics from plants. Science 358:868-PubMedCrossRefGoogle Scholar
  87. Hooker BA, Morris TF, Peters R, Cardon ZG (2005) Long-term effects of tillage and corn stalk return on soil carbon dynamics. Soil Sci Soc Am J 69:188–196CrossRefGoogle Scholar
  88. Houghton RA (2010) How well do we know the flux of CO2 from land-use change? Tellus 62B:337–351CrossRefGoogle Scholar
  89. IEA (International Energy Agency) (2010) Sustainable production of second-generation biofuels. ParisGoogle Scholar
  90. IEA (2011) Technology roadmap—biofuels for transport. ParisGoogle Scholar
  91. IEA (2016) World energy outlook 2016. OECD/IEA, ParisGoogle Scholar
  92. Intergovernmental Panel on Climate Change (IPCC) (2014) Climate change 2014: mitigation of climate change, contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  93. Jaiswal D, De Souza AP, Larsen S et al (2017) Brazilian sugarcane ethanol as an expandable green alternative to crude oil use. Nat Clim Change 7:788–794. Scholar
  94. Johnson JMF, Karlen DL, Andrews SS (2010) Conservation considerations for sustainable bioenergy feedstock production: if, what, where, and how much? J Soil Water Conserv 65:88A–91ACrossRefGoogle Scholar
  95. Johnston M, Licker R, Foley J, Holloway T, Mueller ND, Barford C, Kucharik C (2011) Closing the gap: global potential for increasing biofuel production through agricultural intensification. Environ Res Lett 6:034028CrossRefGoogle Scholar
  96. Jones CD, Zhang X, Reddy AD, Robertson GP, Izaurralde RC (2017) The greenhouse gas intensity and potential biofuel production capacity of maize stover harvest in the US Midwest. GCBBioenerg 9:1333–1343. Scholar
  97. Kant P, Wu S (2011) The extraordinary collapse of Jatropha as a global biofuel. Environ Sci Technol 45:7114–7115PubMedCrossRefGoogle Scholar
  98. Karlen DL, Beeler LW, Ong RG, Dale BE (2015) Balancing energy, conservation, and soil health requirements for plant biomass. J Soil Water Conserv 70:279–287CrossRefGoogle Scholar
  99. Karlen DL, Birell SJ, Hess JR (2011a) A five-year assessment of corn stover harvest in central Iowa, USA. Soil Till Res 115–116:47–55CrossRefGoogle Scholar
  100. Karlen DL, Varvel GE, Johnson JMF, Baker JM, Osborne SL, Novak JM, Adler PR, Roth GW, Birrell SJ (2011b) Monitoring soil quality to assess the sustainability of harvesting corn stover. Agron J 103:288–295CrossRefGoogle Scholar
  101. Kim H, Kim S, Dale BE (2009) Biofuels, land use change, and greenhouse gas emissions: some unexplored variables. Environ Sci Technol 43:961–967PubMedCrossRefGoogle Scholar
  102. Kline KL, Msangi S, Dale VH et al (2017) Reconciling food security and bioenergy: priorities for action. GCB Bioenerg 9:557–576CrossRefGoogle Scholar
  103. Koh LP, Miettinen J, Chin Liew SC, Ghazoul J (2011) Remotely sensed evidence of tropical peatland conversion to oil palm. Proc Natl Acad Sci USA 108:5127–5132PubMedPubMedCentralCrossRefGoogle Scholar
  104. Kutsch WL, Aubinet M, Buchmann N, Smith P, Osborne B, Eugster W, Wattenbach M, Schrumpf M, Schulze ED, Tomelleri E, Ceschia E, Bernhofer C, Béziat P, Carrara A, Di Tommasi P, Grünwald T, Jones M, Magliulo V, Marloie O, Moureaux C, Olioso A, Sanz MJ, Saunders M, Sogaard H, Ziegler W (2010) The net biome production of full crop rotations in Europe. Agric Ecosyst Environ 139:336–345CrossRefGoogle Scholar
  105. Lafond GP, Stumborg M, Lemke R, May WE, Holzapfel CB, Campbell CA (2009) Quantifying straw removal through baling and measuring the long-term impact on soil quality and wheat production. Agron J 101:529–537CrossRefGoogle Scholar
  106. Lal R (2009) Soil quality impacts of residue removal for bioethanol production. Soil Till Res 102:233–241CrossRefGoogle Scholar
  107. Lal R (2016) Soil health and carbon management. Food Energ Sec 5:212–222CrossRefGoogle Scholar
  108. Lapola DM, Schaldach R, Alcamo J, Bondeau A, Koch J, Koelking C, Priess JA (2010) Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proc Natl Acad Sci USA 107:3388–3393PubMedPubMedCentralCrossRefGoogle Scholar
  109. Larkum AWD (2010) Limitations and prospects of natural photosynthesis for bioenergy production. Curr Opin Biotechnol 21:271–276PubMedCrossRefGoogle Scholar
  110. Larson JA, English BC, De La Torre Ugarte DG, Menard RJ, Hellwinckel CM, West TO (2010) Economic and environmental impacts of the corn grain ethanol industry on the United States agricultural sector. J Soil Water Conserv 65:267–279CrossRefGoogle Scholar
  111. Laungani R, Knops JMH (2009) The impact of co-occurring tree and grassland species on carbon sequestration and potential biofuel production. GCB Bioenerg 1:392–403CrossRefGoogle Scholar
  112. Le PVV, Kumar P, Drewry DT (2011) Implications for the hydrologic cycle under climate change due to the expansion of bioenergy crops in the Midwestern United States. Proc Natl Acad Sci USA 108:15085–15090PubMedPubMedCentralCrossRefGoogle Scholar
  113. Lee DK, Aberle E, Anderson EK et al (2018) Biomass production of herbaceous energy crops in the United States: field trial results and yield potential maps from the multiyear regional feedstock partnership. GCB Bioenerg. Scholar
  114. Lemus R, Lal R (2005) Bioenergy crops and carbon sequestration. Crit Rev Plant Sci 24:1–21CrossRefGoogle Scholar
  115. Lisboa CC, Butterbach-Bahl K, Mauder M, Kiese R (2011) Bioethanol production from sugarcane and emissions of greenhouse gases—known and unknowns. GCB Bioenerg 3:277–292CrossRefGoogle Scholar
  116. Lu W, Zhang T (2010) Life-cycle implications of using crop residues for various energy demands in China. Environ Sci Technol 44:4026–4033PubMedCrossRefGoogle Scholar
  117. Loarie SR, Lobell DB, Asner GP, Mu Q, Field CB (2011) Direct impacts on local climate of sugar-cane expansion in Brazil. Nature Clim Change 1:105–109CrossRefGoogle Scholar
  118. Lorenz K, Lal R (2005) The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Adv Agron 88:35–66CrossRefGoogle Scholar
  119. Lorenz K, Lal R (2010) Carbon sequestration in forest ecosystems. Springer, Dordrecht, The NetherlandsCrossRefGoogle Scholar
  120. Machado KS, Seleme R, Maceno MM, Zattar IC (2017) Carbon footprint in the ethanol feedstocks cultivation—agricultural CO2 emission assessment. Agr Syst 157:140–145CrossRefGoogle Scholar
  121. Machovina B, Feeley KJ (2017) Restoring low-input high-diversity grasslands as a potential global resource for biofuels. Sci Tot Environ 609:205–214CrossRefGoogle Scholar
  122. Marland G, Obersteiner M (2008) Large-scale biomass for energy, with considerations and cautions: an editorial comment. Clim Change 87:335–342CrossRefGoogle Scholar
  123. Mathews JA, Tan H (2009) Biofuels and indirect land use change effects: the debate continues. Biofuel Bioprod Bioref. Scholar
  124. McBride AC, Dale VH, Baskaran LM, Downing ME, Eaton LM, Efroymson RA, Garten CT, Kline KL, Jager HI, Mulholland PJ, Parish ES, Schweizer PE, Storey JM (2011) Indicators to support environmental sustainability of bioenergy systems. Ecol Indic 11:1277–1289CrossRefGoogle Scholar
  125. McKone TE, Nazaroff WW, Berck P, Auffhammer M, Lipman T, Torn MS, Masanet E, Lobscheid A, Santero N, Mishra U, Barrett A, Bomberg M, Fingerman K, Scown C, Strogen B, Horvath A (2011) Grand challenges for life-cycle assessment of biofuels. Environ Sci Technol 45:1751–1756PubMedCrossRefGoogle Scholar
  126. Miller SA (2010) Minimizing land use and nitrogen intensity of bioenergy. Environ Sci Technol 44:3932–3939PubMedCrossRefGoogle Scholar
  127. Morgan JA, Follett RF, Allen LH Jr, Del Grosso S, Derner JD, Dijkstra F, Franzluebbers A, Fry R, Paustian K, Schoeneberger MM (2010) Carbon sequestration in agricultural lands of the United States. J Soil Water Conserv 65:6A–13ACrossRefGoogle Scholar
  128. Mulder K, Hagens N, Fisher B (2010) Burning water: a comparative analysis of the energy return on water invested. Ambio 39:30–39PubMedPubMedCentralCrossRefGoogle Scholar
  129. Murphy R, Woods J, Black M, McManus M (2011) Global developments in the competition for land from biofuels. Food Pol 36:S52–S61CrossRefGoogle Scholar
  130. Nabuurs GJ, Masera O, Andrasko K, Benitez-Ponce P, Boer R, Dutschke M, Elsiddig E, Ford-Robertson J, Frumhoff P, Karjalainen T, Krankina O, Kurz WA, Matsumoto M, Oyhantcabal W, Ravindranath NH, Sanz Sanchez MJ, Zhang X (2007) Forestry. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: Mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 541–584Google Scholar
  131. Nuffield Council on Bioethics (2011) Biofuels: ethical issues.
  132. Offermann R, Seidenberger T, Thrän D, Kaltschmitt M, Zinoviev S, Miertus S (2011) Assessment of global bioenergy potentials. Mitig Adapt Strateg Glob Change 16:103–115CrossRefGoogle Scholar
  133. Otto M, Berndes G, Fritsche U (2011) The bioenergy and water nexus. Biofuels Bioprod Bioref 5:343–346CrossRefGoogle Scholar
  134. Owen NA, Fahy KF, Griffiths H (2016) Crassulacean acid metabolism (CAM) offers sustainable bioenergy production and resilience to climate change. GCB Bioenerg 8:737–749CrossRefGoogle Scholar
  135. Owen NA, Inderwildi OR, King DA (2010) The status of conventional world oil reserves—hype or cause for concern? Energy Pol 38:4743–4749CrossRefGoogle Scholar
  136. Patzek TW (2010) A probabilistic analysis of the switchgrass ethanol cycle. Sustainability 2:3158–3194CrossRefGoogle Scholar
  137. Payne WA (2010) Are biofuels antithetic to long-term sustainability of soil and water resources? Adv Agron 105:1–46CrossRefGoogle Scholar
  138. Pehl M, Arvesen A, Humpenöder F et al (2017) Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling. Nat Energ 2:939–945CrossRefGoogle Scholar
  139. Persson T, Garcia Y Garcia A, Paz JO, Fraisse CW, Hoogenboom G (2010) Reduction in greenhouse gas emissions due to the use of bio-ethanol from wheat grain and straw produced in the south-eastern USA. J Agric Sci 148:511–527CrossRefGoogle Scholar
  140. Pickard WF (2010) The future of biomass energy: a Fermi-calculation perspective. Energy Pol 38:1672–1674CrossRefGoogle Scholar
  141. Plevin RJ, O’Hare M, Jones AD, Torn MS, Gibbs HK (2010) Greenhouse gas emissions from biofuels’ indirect land use change are uncertain but may be much greater than previously estimated. Environ Sci Technol 44:8015–8021PubMedCrossRefGoogle Scholar
  142. Poeplau C, Don A, Vesterdal L, Leifeld J, Van Wesemael B, Schumacher J, Gensior A (2011) Temporal dynamics of soil organic carbon after land-use change in the temperate zone—carbon response functions as a model approach. Glob Change Biol 17:2415–2427CrossRefGoogle Scholar
  143. Powers RF, Scott DA, Sanchez FG, Voldseth RA, Page-Dumroese DS, Elioff JD, Stone DM (2005) The North American long-term soil productivity experiment: findings from the first decade of research. For Ecol Manage 220:31–50CrossRefGoogle Scholar
  144. Qin Z, Dunn JB, Kwon H, Mueller S, Wander MM (2016) Soil carbon sequestration and land use change associated with biofuel production: empirical evidence. GCB Bioenerg 8:66–80CrossRefGoogle Scholar
  145. Qin Z, Zhuang Q, Zhu X, Cai X, Zhang X (2011) Carbon consequences and agricultural implications of growing biofuel crops on marginal agricultural lands in China. Environ Sci Technol 45:10765–10772PubMedCrossRefGoogle Scholar
  146. Qiu H, Huang J, Keyzer M, van Veen W, Rozelle S, Fisher G, Ermolieva T (2011) Biofuel development, food security and the use of marginal land in China. J Environ Qual 40:1058–1067PubMedCrossRefGoogle Scholar
  147. Raffa DW, Bogdanski A, Tittonell P (2015) How does crop residue removal affect soil organic carbon and yield? A hierarchical analysis of management and environmental factors. Biomass Bioenerg 81:345–355CrossRefGoogle Scholar
  148. REN21 (2017) Renewables 2017 Global Status Report. REN21 Secretariat, ParisGoogle Scholar
  149. Richardson M, Kumar P (2017) Critical Zone services as environmental assessment criteria in intensively managed landscapes. Earth’s Future 4. Scholar
  150. Ridley CE, Clark CM, LeDuc SD, Bierwagen BG, Lin BB, Mehl A, Tobias DA (2012) Biofuels: network analysis of the literature reveals key environmental and economic unknowns. Environ Sci Technol 46:1309–1315PubMedPubMedCentralCrossRefGoogle Scholar
  151. Riffell S, Verschuyl J, Miller D, Wigley B (2011) Biofuel harvests, coarse woody debris, and biodiversity—a meta-analysis. For Ecol Manage 261:878–887CrossRefGoogle Scholar
  152. Rist J, Lee JSH, Koh LP (2009) Biofuels: social benefits. Science 326:1344PubMedCrossRefGoogle Scholar
  153. Robertson GP, Hamilton SK, Barham BL, et al (2017) Cellulosic biofuel contributions to a sustainable energy future: choices and outcomes. Science 356:eaal2324CrossRefPubMedGoogle Scholar
  154. Robertson GP, Hamilton SK, Del Grosso SJ, Parton WJ (2011) The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations. Ecol Appl 21:1055–1067PubMedCrossRefGoogle Scholar
  155. Robledo-Abad C, Althaus HJ, Berndes G et al (2017) Bioenergy production and sustainable development: science base for policymaking remains limited. GCBBioenerg 9:541–556Google Scholar
  156. Sang T, Zhu W (2011) China’s bioenergy potential. GCB Bioenerg 3:79–90CrossRefGoogle Scholar
  157. Schipfer F, Kranzl L, Leclère D, Sylvain L, Forsell N, Valin H (2017) Advanced biomaterials scenarios for the EU28 up to 2050 and their respective biomass demand. Biomass Bioenerg 96:19–27CrossRefGoogle Scholar
  158. Schnoor JL (2011) Cellulosic biofuels disappoint. Environ Sci Technol 45:7099PubMedCrossRefGoogle Scholar
  159. Scholz V, Heiermann M, Kaulfuss P (2010) Sustainability of energy crop cultivation in Central Europe. In: Lichtfouse E (ed) Sociology, organic farming, climate change and soil science. Springer, Dordrecht, The Netherlands, pp 109–145CrossRefGoogle Scholar
  160. Scown CD, Nazaroff WW, Mishra U, Strogen B, Lobscheid AB, Masanet E, Santero NJ, Horvath A, McKone TE (2012) Lifecycle greenhouse gas implications of US national scenarios for cellulosic ethanol production. Environ Res Lett 7:014011. Scholar
  161. Searchinger TD, Beringer T, Strong A (2017) Does the world have low-carbon bioenergy potential from the dedicated use of land? Energ Pol 110:434–446CrossRefGoogle Scholar
  162. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T-H (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240PubMedCrossRefGoogle Scholar
  163. Searle SY, Malins CJ (2014) Will energy crop yields meet expectations? Biomass Bioenerg 65:3–12. Scholar
  164. Searle S, Malins C (2015) A reassessment of global bioenergy potential in 2050. GCB Bioenerg 7:328–336. Scholar
  165. Service RF (2010) Is there a road ahead for cellulosic ethanol? Science 329:784–785PubMedCrossRefGoogle Scholar
  166. Shah A, Darr M, Khanal S, Lal R (2017) A techno-environmental overview of a corn stover biomass feedstock supply chain for cellulosic biorefineries. Biofuels 8:59–69CrossRefGoogle Scholar
  167. Simmons BA (2011) Opportunities and challenges in advanced biofuel production: the importance of synthetic biology and combustion science. Biofuels 2:5–7CrossRefGoogle Scholar
  168. Singh NK, Dhar DW (2011) Microalgae as second generation biofuel. A review. Agronomy Sust Developm 31:605–629CrossRefGoogle Scholar
  169. Slade R, Bauen A, Gross R (2014) Global bioenergy resources. Nat Clim Change 4:99–105CrossRefGoogle Scholar
  170. Slade R, Saunders R, Gross R, Bauen A (2011) Energy from biomass: the size of the global resource. Imperial College Centre for Energy Policy and Technology and UK Energy Research Centre, LondonGoogle Scholar
  171. Smil V (1999) Crop residues: agriculture’s largest harvest. Bioscience 49:299–308CrossRefGoogle Scholar
  172. Souza GM, Ballester MVR, de Brito Cruz CH et al (2017) The role of bioenergy in a climate-changing world. Environ Develop 23:57–64CrossRefGoogle Scholar
  173. Strapasson A, Woods J, Chum H et al (2017) On the global limits of bioenergy and land use for climate change mitigation. GCB Bioenerg 9:1721–1735. Scholar
  174. Tiedje J, Donohue T (2008) Microbes in the energy grid. Science 320:985PubMedPubMedCentralCrossRefGoogle Scholar
  175. Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high diversity grassland biomass. Science 314:1598–1600PubMedCrossRefGoogle Scholar
  176. UNEP (United Nations Environment Program) (2009) Towards sustainable production and use of resources: assessing biofuels. Working Group on biofuels of the International Panel on Sustainable Resource Management, UNEP, ParisGoogle Scholar
  177. UNEP (2011) Towards a green economy: pathways to sustainable development and poverty eradication.
  178. U.S. DOE (United States Department of Energy) (2005) Biomass as a feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply.
  179. Valentine J, Clifton-Brown J, Hastings A, Robson P, Allison G, Smith P (2012) Food vs. fuel: the use of land for lignocellulosic ‘next generation’ energy crops that minimize competition with primary food production. GCB Bioenerg 4:1–19CrossRefGoogle Scholar
  180. Renssen Van (2011) A biofuel conundrum. Nature Geosci 1:389–390Google Scholar
  181. Whitaker J, Ludley KE, Rowe R, Taylor G, Howard DC (2010) Sources of variability in greenhouse gas and energy balances for biofuel production: a systematic review. GCB Bioenerg 2:99–112Google Scholar
  182. Wigmosta MS, Coleman AM, Skaggs RJ, Huesemann MH, Lane LJ (2011) National microalgae biofuel production potential and resource demand. Water Resour Res 47, W00H04.
  183. Wilhelm WW, Johnson JMF, Karlen DL, Lightle TD (2007) Corn stover to sustain soil organic carbon further constrains biomass supply. Agron J 99:1665–1667CrossRefGoogle Scholar
  184. Wilts R, Reicosky DC, Allmaras RR, Clapp CE (2004) Long-term corn residue effects: harvest alternatives, soil carbon turnover, and root derived carbon. Soil Sci Soc Am J 68:1342–1351CrossRefGoogle Scholar
  185. Wright CK Larson B, Lark TJ, Gibbs HK (2017) Recent grassland losses are concentrated around U.S. ethanol refineries. Environ Res Lett 12:044001CrossRefGoogle Scholar
  186. Yamaguchi S, Kawada Y, Yuge H, Tanaka K, Imamura S (2017) Development of new carbon resources: production of important chemicals from algal residue. Sci Rep 7:855PubMedPubMedCentralCrossRefGoogle Scholar
  187. Zhang B, Penton R, Xue C et al (2017) Soil depth and crop determinants of bacterial communities under ten biofuel cropping systems. Soil Biol Biochem 112:140–152CrossRefGoogle Scholar
  188. Zhu P, Zhuang Q, Eva J, Bernacchi (2017) Importance of biophysical effects on climate warming mitigation potential of biofuel crops over the conterminous United States. GCBBioenerg 9:577–590CrossRefGoogle Scholar
  189. Zilberman D (2017) Indirect land use change: much ado about (almost) nothing. GCB Bioenerg 9:485–488CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Carbon Management and Sequestration Center, School of Environment and Natural ResourcesThe Ohio State UniversityColumbusUSA

Personalised recommendations