Facilitating Analysis of Mass Media Influence Through Content Analysis and Emotional Computing

  • Stefanie NiklanderEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 850)


During the last years, different HCI applications have successfully employed sentimental, emotional, and affective computing algorithms for solving various recognition, interpretation and simulations tasks related to the study of human affects. In this paper, we combine content and sentimental analysis to facilitate the understanding of how mass media may influence and/or control a given information context. We employ as case study the army and police corruption information. We analyze the speeches constructed by the press and the comments that users post on the mass medias web sites. Interesting results are obtained where all topics that readers visibilize and/or invisibilize when constructing their representations about the study cases are precisely detected.


Sentimental analysis Content analysis Social networks 


  1. 1.
    Thompson, J.B.: El escándalo político. Poder y visibilidad en la era de los medios de comunicación. Paidós, Barcelona (2001)Google Scholar
  2. 2.
    Lawrence, R.G., Bennett, W.L.: Rethinking media and public opinion: reactions to the Clinton-Lewinsky scandal. Political Sci. Q. 116(3), 425–446 (2001)CrossRefGoogle Scholar
  3. 3.
    Lasswell, H.: The structure and function of communication in society. In: Bryson, L. (ed.) The Communication of Ideas. Harper, New York (1948)Google Scholar
  4. 4.
    McCombs, M., Shaw, D.L.: The agenda-setting function of the mass media. Publ. Opin. Q. 36, 176–187 (1972)CrossRefGoogle Scholar
  5. 5.
    Rodriguez, R.: Teoría de la Agenda-Setting aplicación a la enseñanza universitaria. Observatorio Europeo de Tendencias Sociales, Madrid (2004)Google Scholar
  6. 6.
    Eyal, C.H., Winter, J.P., Degeorge, W.F.: The concept of time frame in agenda-setting. In: Wilhoit, G.C., DeBock, H. (eds.) Mass Communication Review Yearbook, vol. 2, pp. 212–218. Sage, Beverly Hills (1981)Google Scholar
  7. 7.
    Entman, R.: Framing: toward clarification of a fractured paradigm. J. Commun. 43(4), 51–58 (1993)CrossRefGoogle Scholar
  8. 8.
    Thelwall, M., Buckley, K., Paltoglou, G.: Sentiment strength detection for the social web. J. Am. Soc. Inform. Sci. Technol. 63(1), 163–173 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidad Autónoma de ChileSantiagoChile

Personalised recommendations