Advertisement

Interface for a Better Tourist Experience, Bayesian Approach and Cox-Jaynes Support

  • Karim Elia FraouaEmail author
  • Sylvain Michelin
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 850)

Abstract

This work presents a new way to enhance a tourism experience through an interface. Basically considering a Bayesian approach and introducing the Cox-Jaynes theorem, we can consider the improvement of this interface. We take in our approach how adding some features will ultimately create an interface that fit the needs of the tourist.

Keywords

Cox-Jaynes Tourist behavior Bayesian appraoch 

References

  1. 1.
    Maciocco, G., Serreli, S.: Enhancing the city: new perspectives for tourism and leisure. In: Maciocco, G., Serreli, S. (eds.) Enhancing the City, pp. 1–15. Springer, Dordrecht (2009).  https://doi.org/10.1007/978-90-481-2419-0_1CrossRefGoogle Scholar
  2. 2.
    Narangajavana, Y., Fiol, L.J.C., Tena, M.Á.M., Artola, R.M.R., García, J.S.: The influence of social media in creating expectations. An empirical study for a tourist destination. Ann. Tour. Res. 65, 60–70 (2017)CrossRefGoogle Scholar
  3. 3.
    Gilboa, I.: Rationality and the Bayesian paradigm. J. Econ. Methodol. 22(3), 312–334 (2015)CrossRefGoogle Scholar
  4. 4.
    Gretzel, U., Sigala, M., Xiang, Z., et al.: Electron Markets 25, 179 (2015).  https://doi.org/10.1007/s12525-015-0196-8CrossRefGoogle Scholar
  5. 5.
    Lane, D.A.: Utility, decision, and quality of life. J. Chronic Dis. 40(6), 585–591 (1987)CrossRefGoogle Scholar
  6. 6.
    Ash, R.B.: Basic Probability Theory. Courier Corporation, North Chelmsford (2008)zbMATHGoogle Scholar
  7. 7.
    Popper, K.R.: The propensity interpretation of probability. Br. J. Philos. Sci. 10(37), 25–42 (1959)CrossRefGoogle Scholar
  8. 8.
    Anscombe, F.J., Aumann, R.J.: A definition of subjective probability. Ann. Math. Stat. 34(1), 199–205 (1963)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Johnson-Laird, P.N.: Mental models, deductive reasoning, and the brain. Cogn. Neurosci. 65, 999–1008 (1995)Google Scholar
  10. 10.
    Perfors, A., Tenenbaum, J.B., Griffiths, T.L., Xu, F.: A tutorial introduction to Bayesian models of cognitive development. Cognition 120(3), 302–321 (2011)CrossRefGoogle Scholar
  11. 11.
    Ajzen, I., Fishbein, M.: A Bayesian analysis of attribution processes. Psychol. Bull. 82(2), 261 (1975)CrossRefGoogle Scholar
  12. 12.
    Clayton, A., Waddington, T.: Bridging the intuition gap in Cox’s theorem: a Jaynesian argument for universality. Int. J. Approx. Reason. 80, 36–51 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Furutani, T., Fujita, A.: A study on foreign tourists’ behavior and consumer satisfaction in Kamakura. J. East. Asia Soc. Transp. Stud. 6, 2154–2169 (2005)Google Scholar
  14. 14.
    Bellis, M.: Causalité, propension, probabilité. Intellectica 2(21), 199–231 (1995)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université Paris-Est Marne-La-Vallée, Equipe Dispositifs d’information et de Communication à l’Ere Numérique (DICEN IDF), Conservatoire National des Arts et Métiers, Université Paris-Nanterre, EA 7339Champs-sur-MarneFrance

Personalised recommendations