Advertisement

Influence of User and Task Related Variables on Latency Perception

  • Nadine Rauh
  • Miriam Gieselmann
  • Josef F. Krems
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 850)

Abstract

Nowadays, technical system latencies are nearly unavoidable in Human-Computer-Interaction. However, latencies, if detected by the user, were shown to have a negative influence on experience and satisfaction. Therefore, it is important to examine users’ latency perception thresholds with respect to different influencing factors empirically.

In the present study the influence of movement type (circular vs. straight), motivation and visual processing speed were examined by using a mouse-based 2D-dragging-task. Thirty participants (67% female, Mage = 22.27) took part and had to move a cursor through a circular or straight tunnel by using a computer mouse.

Results showed that participants detected lower latencies when moving the cursor circular. An influence of the motivation on latency perception could not be found. Participants with higher visual processing speed detected lower latencies.

Future studies should explore further factors influencing latency perception. When designing Human-Computer-Interaction in matters of latency, the type of executed movement should be considered.

Keywords

Movement type Motivation Visual processing speed 

References

  1. 1.
    MacKenzie, I.S., Ware, C.: Lag as a determinant of human performance in interactive systems. In: Arnold, B., van der Veer, G., White, T. (eds.) Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI 1993, pp. 488–493. ACM Press, New York (1993).  https://doi.org/10.1145/169059.169431
  2. 2.
    Jota, R., Ng, A., Dietz, P., Wigdor, D.: How fast is fast enough? In: Mackay, W.E., Brewster, S., Bødker, S. (eds.) Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI 2013, p. 2291. ACM Press, New York (2013).  https://doi.org/10.1145/2470654.2481317
  3. 3.
    Zhou, R., Shao, S., Li, W., Zhou, L.: How to define the user’s tolerance of response time in using mobile applications. In: 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 281–285. IEEE (2016).  https://doi.org/10.1109/IEEM.2016.7797881
  4. 4.
    Fischer, A.R.H., Blommaert, F.J.J., Midden, C.J.H.: Monitoring and evaluation of time delay. Int. J. Hum.-Comput. Interact. 19(2), 163–180 (2005).  https://doi.org/10.1207/s15327590ijhc1902_1CrossRefGoogle Scholar
  5. 5.
    Attig, C., Rauh, N., Franke, T., Krems, J.F.: System latency guidelines then and now – is zero latency really considered necessary? In: Harris, D. (ed.) Engineering Psychology and Cognitive Ergonomics: Cognition and Design. EPCE 2017. LNCS, vol. 10276, pp. 3–14. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58475-1_1CrossRefGoogle Scholar
  6. 6.
    Forch, V., Franke, T., Rauh, N., Krems, J.F.: Are 100 Milliseconds fast enough? characterizing latency perception thresholds in mouse-based interaction. Paper presented at the 19th International Conference on Human-Computer Interaction, Vancouver, Canada, pp. 9–14, July 2017Google Scholar
  7. 7.
    Miller, R.B.: Response time in man-computer conversational transactions. In: Proceedings of the December 9–11, Fall Joint Computer Conference, Part I, AFIPS 1968 (Fall, Part I), p. 267. ACM Press, New York (1968).  https://doi.org/10.1145/1476589.1476628
  8. 8.
    Annett, M., Ng, A., Dietz, P., Bischof, W.F., Gupta, A.: How low should we go? understanding the perception of latency while inking. In: Kry, P.G. (ed.) Graphics interface 2014, Montreal, Quebec, Canada, 7–9 May 2014, Proceedings, [part of the 2014 AI/GI/CRV Conference; Including the Annual General Meeting of CHCCS/SCDHM held during the Graphics Interface Conference]. CRC Press, Boca Raton (2014)Google Scholar
  9. 9.
    Deber, J., Jota, R., Forlines, C., Wigdor, D.: How much faster is fast enough? In: Begole, B., Kim, J., Inkpen, K., Woo, W. (eds.) Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems - CHI 2015, pp. 1827–1836. ACM Press, New York (2015).  https://doi.org/10.1145/2702123.2702300
  10. 10.
    Ng, A., Dietz, P.H.: The effects of latency and motion blur on touch screen user experience. J. Soc. Inform. Display 22(9), 449–456 (2014).  https://doi.org/10.1002/jsid.243CrossRefGoogle Scholar
  11. 11.
    Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47, 381–391 (1954)CrossRefGoogle Scholar
  12. 12.
    Accot, J., Zhai, S.: Performance evaluation of input devices in trajectory-based tasks. In: Williams, M.G., Altom, M.W. (eds.) Proceedings of the SIGCHI Conference on Human Factors in Computing Systems the CHI is the Limit - CHI 1999, pp. 466–472. ACM Press, New York (1999).  https://doi.org/10.1145/302979.303133
  13. 13.
    Rank, M., Shi, Z., Hirche, S.: Perception of delay in haptic telepresence systems. Presence Teleoperators Virtual Environ. 19(5), 389–399 (2010).  https://doi.org/10.1162/pres_a_00021CrossRefGoogle Scholar
  14. 14.
    Baumert, J., Demmrich, A.: Test motivation in the assessment of student skills: the effects of incentives on motivation and performance. Eur. J. Psychol. Educ. 16(3), 441–462 (2001).  https://doi.org/10.1007/BF03173192CrossRefGoogle Scholar
  15. 15.
    Chan, D., Schmitt, N., DeShon, R.P., Clause, C.S., Delbridge, K.: Reactions to cognitive ability tests: the relationships between race, test performance, face validity perceptions, and test-taking motivation. J. Appl. Psychol. 82(2), 300–310 (1997).  https://doi.org/10.1037/0021-9010.82.2.300CrossRefGoogle Scholar
  16. 16.
    Wolf, L.F., Smith, J.K.: The consequence of consequence: motivation, anxiety, and test performance. Appl. Measur. Educ. 8(3), 227–242 (1995).  https://doi.org/10.1207/s15324818ame0803_3CrossRefGoogle Scholar
  17. 17.
    Gerrig, R.J., Zimbardo, P.G.: Psychologie, 18th edn. Pearson Higher Education, München (2011)Google Scholar
  18. 18.
    Titz, C.: Informationsverarbeitungsgeschwindigkeit, altersbedingte. In: Wirtz, M.A. (ed.) Dorsch - Lexikon der Psychologie, 18th edn. Hogrefe, Bern (2014)Google Scholar
  19. 19.
    Wechsler, D.: WAIS-III: Administration and Scoring Manual: Wechsler Adult Intelligence Scale, 3rd edn. Psychological Corporation, San Antonio (1997)Google Scholar
  20. 20.
    Deary, I.J., Liewald, D., Nissan, J.: A free, easy-to-use, computer-based simple and four-choice reaction time programme: the Deary-Liewald reaction time task. Behav. Res. Methods 43(1), 258–268 (2011).  https://doi.org/10.3758/s13428-010-0024-1CrossRefGoogle Scholar
  21. 21.
    Kreutzer, J.S., DeLuca, J., Caplan, B. (eds.): Encyclopedia of Clinical Neuropsychology. Springer, New York (2011).  https://doi.org/10.1007/978-0-387-79948-3. p. 1323CrossRefGoogle Scholar
  22. 22.
    Gomila, L.: Simple and Fast Multimedia Library. https://www.sfml-dev.org/. Accessed 15 Mar 2016
  23. 23.
    King-Smith, P.E., Grigsby, S.S., Vingrys, A.J., Benes, S.C., Supowit, A.: Efficient and unbiased modifications of the QUEST threshold method: theory, simulations, experimental evaluation and practical implementation. Vis. Res. 34(7), 885–912 (1994).  https://doi.org/10.1016/0042-6989(94)90039-6CrossRefGoogle Scholar
  24. 24.
    Cohen, J.: A power primer. Psychol. Bull. 11, 155–159 (1992).  https://doi.org/10.1037/0033-2909.112.1.155CrossRefGoogle Scholar
  25. 25.
    Field, A.: Discovering Statistics Using IBM SPSS Statistics: and Sex and Drugs and Rock ‘n’ Roll, 4th edn. SAGE, Los Angeles (2015)Google Scholar
  26. 26.
    Camerer, C.F., Hogarth, R.M., Budescu, D.V., Eckel, C.: The effects of financial incentives in experiments: a review and capital-labor-production framework. In: Fischhoff, B., Manski, C.F. (eds.) Elicitation of Preferences, pp. 7–48. Springer, Dordrecht (1999).  https://doi.org/10.1007/978-94-017-1406-8_2CrossRefGoogle Scholar
  27. 27.
    Mäki-Patola, T., Hämäläinen, P.: Latency tolerance for gesture controlled continuous sound instrument without tactile feedback. In: International Computer Music Conference Proceedings (2004)Google Scholar
  28. 28.
    Salthouse, T.A.: The processing-speed theory of adult age differences in cognition. Psychol. Rev. 103(3), 403–428 (1996).  https://doi.org/10.1037/0033-295X.103.3.403CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nadine Rauh
    • 1
  • Miriam Gieselmann
    • 1
  • Josef F. Krems
    • 1
  1. 1.Chemnitz University of TechnologyChemnitzGermany

Personalised recommendations