Advertisement

Acoustic Sensors

  • Nilanjan Dey
  • Amira S. Ashour
  • Waleed S. Mohamed
  • Nhu Gia Nguyen
Chapter
Part of the SpringerBriefs in Speech Technology book series (BRIEFSSPEECHTECH)

Abstract

An acoustic wave biosensor employs mechanical or acoustic waves as a detection instrument to attain biochemical, biophysical, and medical information. It senses changes in elasticity, mass, dielectric properties, and conductivity from the electrical or mechanical variations. At an input transducer, the piezoelectric effect is employed in these devices to stimulate the acoustic waves electrically and to obtain the waves at the output transducer. Acoustic biosensors are implemented with robust piezoelectric crystals such as lithium tantalite, lithium niobate, or quartz that can detect various biomolecules. Sound waves are generated by different compression and expansion of the medium at specific frequencies. For auscultation and listening to body sounds, the stethoscope instrument is used to hear the sounds produced from the heart, intestinal tract, lungs, stomach, the blood flow in the exterior vessels, venous, arterial, uterine, and the sound of human’s/animal fetuses. Acoustic wave sensors are convenient in several applications as predominantly mass sensitive devices capable of the respond to small environmental perturbations. New surface acoustic wave devices using different materials for chemical and biological sensing are developed. The improvement of a broad sensor system for biomarker and chemical sensing attracts several researchers. This chapter introduces in details the piezoelectricity effect as well as the acoustic sensor design and the acoustic stethoscope. Finally, the acoustic wave sensors including the bulk acoustic wave sensors, the surface acoustic wave sensors, and the acoustic wave propagation modes are introduced.

Keywords

Piezoelectricity effect Piezoelectric materials Quartz Shear effect Longitudinal effect Transverse effect Bulk acoustic wave sensors Surface acoustic devices Acoustic stethoscope Propagation modes 

References

  1. 1.
    Corso, C. D. (2008). Theoretical and experimental development of a ZnO-based laterally excited thickness shear mode acoustic wave immunosensor for cancer biomarker detection (Doctoral dissertation, Georgia Institute of Technology).Google Scholar
  2. 2.
    Rocha-Gaso, M. I., March-Iborra, C., Montoya-Baides, Á., & Arnau-Vives, A. (2009). Surface generated acoustic wave biosensors for the detection of pathogens: A review. Sensors, 9(7), 5740–5769.Google Scholar
  3. 3.
    Wu, H. (2017). Acoustic wave biosensors for biomechanical and biological characterization of cells (Doctoral dissertation, University of Pittsburgh).Google Scholar
  4. 4.
    Campos, A. P. (2015). CMOS integration of AlN based piezoelectric microcantilevers (Doctoral dissertation, Universidad Politécnica de Madrid).Google Scholar
  5. 5.
    Lines, M. E., & Glass, A. M. (1977). Principles and applications of ferroelectrics and related materials. Oxford: Oxford University Press.Google Scholar
  6. 6.
    Harsányi, G. (2000). Sensors in biomedical applications: Fundamentals, technology and applications. Boca Rato: CRC Press.CrossRefGoogle Scholar
  7. 7.
    Shen, B., Yang, X., & Li, Z. (2006). A cement-based piezoelectric sensor for civil engineering structure. Materials and Structures, 39(1), 37–42.CrossRefGoogle Scholar
  8. 8.
    Wakekar, R. K., Bansod, N. N., Machindra, A. M., & Patil, S. R. (2015). Stampede alert system with heart beat sensor. People, 24.Google Scholar
  9. 9.
    Tian-Ling, R., Lin-Tao, Z., Li-Tian, L., & Zhi-Jian, L. (2002). Design optimization of beam-like ferroelectrics-silicon microphone and microspeaker. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49(2), 266–270.CrossRefGoogle Scholar
  10. 10.
    Yoshino, Y., Makino, T., Katayama, Y., & Hata, T. (2000). Optimization of zinc oxide thin film for surface acoustic wave filters by radio frequency sputtering. Vacuum, 59(2–3), 538–545.CrossRefGoogle Scholar
  11. 11.
    Saleh, S., Elsimary, H., Zaki, A., & Ahmad, S. (2006). Design and fabrication of piezoelectric acoustic sensor. WSEAS Transactions on Electronics, 3(4), 192.Google Scholar
  12. 12.
    De Silva, C. W. (2015). Sensors and actuators: Engineering system instrumentation. Boca Raton: CRC Press.Google Scholar
  13. 13.
    Lynch, J. P., & Loh, K. J. (2006). A summary review of wireless sensors and sensor networks for structural health monitoring. Shock and Vibration Digest, 38(2), 91–130.CrossRefGoogle Scholar
  14. 14.
    Livingston, F. J. (2014). Technology for improving the quality of life for patients suffering from vascular insufficiency. North Carolina State University.Google Scholar
  15. 15.
    Newnham, R. E., Skinner, D. P., & Cross, L. E. (1978). Connectivity and piezoelectric-pyroelectric composites. Materials Research Bulletin, 13(5), 525–536.CrossRefGoogle Scholar
  16. 16.
    Tressler, J. F., Alkoy, S., & Newnham, R. E. (1998). Piezoelectric sensors and sensor materials. Journal of Electroceramics, 2(4), 257–272.CrossRefGoogle Scholar
  17. 17.
    Safari, A. (1994). Development of piezoelectric composites for transducers. Journal de Physique III, 4(7), 1129–1149.CrossRefGoogle Scholar
  18. 18.
    Dolan, T. G., Oliver, S. R., & Maurer, J. F. (2001). Stethoscopes: Real-ear measurements and digital frequency transposition. The Hearing Journal, 54(1), 36–44.CrossRefGoogle Scholar
  19. 19.
    Yashaswini, B. S., & Satyanarayana, B. S. (2012). The design of an electronic stethoscope-review. In International conference on computer science and informatics (ICCSI)–Hyderabad–on 9th march.Google Scholar
  20. 20.
    Grate, J. W., & Frye, G. C. (1996). Acoustic wave sensors. Sensors Update, 2(1), 37–83.CrossRefGoogle Scholar
  21. 21.
    Ballantine, D. S., Jr., White, R. M., Martin, S. J., Ricco, A. J., Zellers, E. T., Frye, G. C., & Wohltjen, H. (1996). Acoustic wave sensors: Theory, design and physico-chemical applications. Elsevier.Google Scholar
  22. 22.
    Thompson, M., Kipling, A. L., Duncan-Hewitt, W. C., Rajaković, L. V., & Čavić-Vlasak, B. A. (1991). Thickness-shear-mode acoustic wave sensors in the liquid phase. A review. Analyst, 116(9), 881–890.CrossRefGoogle Scholar
  23. 23.
    Vellekoop, M. J. (1998). Acoustic wave sensors and their technology. Ultrasonics, 36(1–5), 7–14.CrossRefGoogle Scholar
  24. 24.
    Wohltjen, H. (1984). Mechanism of operation and design considerations for surface acoustic wave device vapour sensors. Sensors and Actuators, 5(4), 307–325.CrossRefGoogle Scholar
  25. 25.
    Thompson, M., Dhaliwal, G. K., Arthur, C. L., & Calabrese, G. S. (1987). The potential of the bulk acoustic wave device as a liquid-phase immunosensor. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 34(2), 127–135.CrossRefGoogle Scholar
  26. 26.
    Peng, H., Liang, C., Zhou, A., Zhang, Y., Xie, Q., & Yao, S. (2000). Development of a new atropine sulfate bulk acoustic wave sensor based on a molecularly imprinted electrosynthesized copolymer of aniline with o-phenylenediamine. Analytica Chimica Acta, 423(2), 221–228.CrossRefGoogle Scholar
  27. 27.
    Rey-Mermet, S., Lanz, R., & Muralt, P. (2006). Bulk acoustic wave resonator operating at 8 GHz for gravimetric sensing of organic films. Sensors and Actuators B: Chemical, 114(2), 681–686.CrossRefGoogle Scholar
  28. 28.
    Lucklum, R., & Hauptmann, P. (2006). Acoustic microsensors—The challenge behind microgravimetry. Analytical and Bioanalytical Chemistry, 384(3), 667–682.CrossRefGoogle Scholar
  29. 29.
    Shiokawa, S., & Kondoh, J. (2004). Surface acoustic wave sensors. Japanese Journal of Applied Physics, 43(5S), 2799.CrossRefGoogle Scholar
  30. 30.
    Gronewold, T. M. (2007). Surface acoustic wave sensors in the bioanalytical field: Recent trends and challenges. Analytica Chimica Acta, 603(2), 119–128.CrossRefGoogle Scholar
  31. 31.
    Wohltjen, H. (1984). Mechanism of operation and design considerations for surface acoustic wave device vapour sensors. Sensors and Actuators, 5(4), 307–325.CrossRefGoogle Scholar
  32. 32.
    Josse, F., Bender, F., & Cernosek, R. W. (2001). Guided shear horizontal surface acoustic wave sensors for chemical and biochemical detection in liquids. Analytical Chemistry, 73(24), 5937–5944.CrossRefGoogle Scholar
  33. 33.
    Länge, K., Rapp, B. E., & Rapp, M. (2008). Surface acoustic wave biosensors: A review. Analytical and Bioanalytical Chemistry, 391(5), 1509–1519.CrossRefGoogle Scholar
  34. 34.
    Grate, J. W. (2000). Acoustic wave microsensor arrays for vapor sensing. Chemical Reviews, 100(7), 2627–2648.CrossRefGoogle Scholar
  35. 35.
    Hierlemann, A., Zellers, E. T., & Ricco, A. J. (2001). Use of linear solvation energy relationships for modeling responses from polymer-coated acoustic-wave vapor sensors. Analytical Chemistry, 73(14), 3458–3466.CrossRefGoogle Scholar
  36. 36.
    Barkan, A., Merlino, R. L., & D’angelo, N. (1995). Laboratory observation of the dust-acoustic wave mode. Physics of Plasmas, 2(10), 3563–3565.CrossRefGoogle Scholar
  37. 37.
    Mortet, V., Elmazria, O., Nesladek, M., Assouar, M. B., Vanhoyland, G., D’Haen, J., D'OIieslaeger, M., & Alnot, P. (2002). Surface acoustic wave propagation in aluminum nitride-unpolished freestanding diamond structures. Applied Physics Letters, 81(9), 1720–1722.CrossRefGoogle Scholar
  38. 38.
    Ohmachi, Y., Uchida, N., & Niizeki, N. (1972). Acoustic wave propagation in TeO 2 single crystal. The Journal of the Acoustical Society of America, 51(1B), 164–168.CrossRefGoogle Scholar
  39. 39.
    Wohltjen, H., & Dessy, R. (1979). Surface acoustic wave probe for chemical analysis. I. Introduction and instrument description. Analytical Chemistry, 51(9), 1458–1464.CrossRefGoogle Scholar
  40. 40.
    Engan, H. E., Kim, B. Y., Blake, J. N., & Shaw, H. J. (1988). Propagation and optical interaction of guided acoustic waves in two-mode optical fibers. Journal of Lightwave Technology, 6(3), 428–436.CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nilanjan Dey
    • 1
  • Amira S. Ashour
    • 2
  • Waleed S. Mohamed
    • 3
  • Nhu Gia Nguyen
    • 4
  1. 1.Department of Information TechnologyTechno India College of TechnologyKolkataIndia
  2. 2.Department of Electronics and Electrical Communications EngineeringFaculty of Engineering, Tanta UniversityTantaEgypt
  3. 3.Department of Internal MedicineFaculty of Medicine, Tanta UniversityTantaEgypt
  4. 4.Graduate SchoolDuy Tan UniversityDa Nang CityVietnam

Personalised recommendations