Acoustic Wave Technology

  • Nilanjan Dey
  • Amira S. Ashour
  • Waleed S. Mohamed
  • Nhu Gia Nguyen
Part of the SpringerBriefs in Speech Technology book series (BRIEFSSPEECHTECH)


Sound is the generalized name of the acoustic waves that have frequencies within the range of one to tens of thousands Hertz, where the maximum human hearing ability is 20 kHz. The main role of the sound sensors/transducers is to use electrical energy for creating mechanical vibrations that disturb the surrounding air to produce sound at the inaudible or audible frequencies, which requires a transmission medium. The sound waveform can be characterized by the velocity (m/s), the frequency (ƒ), and the wavelength (λ), like the electrical waveform. The sounds wave shape and frequency are determined by the vibration/origin that created the sound, while the velocity depends on the sound wave transmission. Discovery of the quartz resonator to stabilize the electronic oscillators leads to the detection of the piezoelectricity. Piezoelectricity can be defined as the electrical charges production by the mechanical stress imposition. This creates a revolution in the acoustic wave sensors and devices using a piezoelectric material for generating acoustic waves. Applying a fluctuating electric field by the piezoelectric acoustic wave sensors, a mechanical wave is created that propagates via the substrate and transformed to electric field for further measurements. This chapter reveals about the fundamentals of the acoustics with a detailed explanation of the several body acoustic sounds sources.


Acoustics Psychoacoustics Sensing processes Heart sounds Breath sound Intestinal sound Korotkoff sounds Vascular sounds Friction rubs sounds 


  1. 1.
    Major, F. G. (2014). The quartz revolution. In Quo Vadis: Evolution of modern navigation (pp. 131–150). New York: Springer.CrossRefGoogle Scholar
  2. 2.
    McGahey, C. S. (2009). Harnessing nature's timekeeper: A history of the piezoelectric quartz crystal technological community (1880–1959) (Doctoral dissertation, Georgia Institute of Technology).Google Scholar
  3. 3.
    Major, F. G. (2013). The quantum beat: The physical principles of atomic clocks. Springer Science & Business Media.Google Scholar
  4. 4.
    Banica, F. G. (2012). Chemical sensors and biosensors: Fundamentals and applications. Chichester: Wiley.CrossRefGoogle Scholar
  5. 5.
    Park, N. (2015). Development of integration of sensors and circuits for wearable electronics. San Diego: University of California.Google Scholar
  6. 6.
    Vorländer, M. (2007). Auralization: Fundamentals of acoustics, modelling, simulation, algorithms and acoustic virtual reality. Berlin: Springer Science & Business Media.Google Scholar
  7. 7.
    Hansen, C. H. (2001). Fundamentals of acoustics. In Occupational exposure to noise: Evaluation, prevention and control (pp. 23–52). Geneva: World Health Organization.Google Scholar
  8. 8.
    Jacobsen, F., Poulsen, T., Rindel, J. H., Gade, A. C., & Ohlrich, M. (2011). Fundamentals of acoustics and noise control. Department of Electrical Engineering, Technical University of Denmark.Google Scholar
  9. 9.
    Baumgarte, F., & Faller, C. (2003). Binaural cue coding-Part I: Psychoacoustic fundamentals and design principles. IEEE Transactions on Speech and Audio Processing, 11(6), 509–519.CrossRefGoogle Scholar
  10. 10.
    Weisenberger, J. M. (1994). Fundamentals of Hearing: An Introduction. Ear and Hearing, 15(5), 409.Google Scholar
  11. 11.
    Müller, G., & Möser, M. (Eds.). (2012). Handbook of engineering acoustics. Springer Science & Business Media.Google Scholar
  12. 12.
    Toole, F. E. (2000, September). The acoustics and psychoacoustics of loudspeakers and rooms-the stereo past and the multichannel future. In Audio engineering society convention 109. Audio Engineering Society.Google Scholar
  13. 13.
    Zwicker, E., & Fastl, H. (2013). Psychoacoustics: Facts and models (Vol. 22). Springer Science & Business Media.Google Scholar
  14. 14.
    Raichel, D. R. (2006). The science and applications of acoustics. Springer Science & Business Media.Google Scholar
  15. 15.
    Schleske, M. (2002). Empirical tools in contemporary violin making: Part II. Psychoacoustic analysis and use of acoustical tools. CAS Journal, 4(6), 43.Google Scholar
  16. 16.
    Lundén, P., Gustin, M., Nilsson, M. E., Forssén, J., & Hellström, B. (2010, September). Psychoacoustic evaluation as a tool for optimization in the development of an urban soundscape simulator. In Proceedings of the 5th Audio Mostly Conference: A Conference on Interaction with Sound (p. 3). ACM.Google Scholar
  17. 17.
    Blauert, J. (Ed.). (2005). Communication acoustics (Vol. 2). Berlin: Springer.Google Scholar
  18. 18.
    Sterne, J. (2003). The audible past: Cultural origins of sound reproduction. Durham\London: Duke University Press.CrossRefGoogle Scholar
  19. 19.
    Hollerrweger, F. (2011). The revolution is hear!: Sound art, the everyday and aural awareness (Doctoral dissertation, School of Music and Sonic Arts, Faculty of Arts, Humanities and Social Sciences, Queen's University Belfast).Google Scholar
  20. 20.
    Tichindeleanu, O. (2008). The graphic sound. An archeology of sound, technology and knowledge at 1900 (Doctoral dissertation, State University of New York at Binghamton).Google Scholar
  21. 21.
    Tavel, M. E. (2006). Cardiac auscultation: A glorious past—And it does have a future! Circulation, 113(9), 1255–1259.CrossRefGoogle Scholar
  22. 22.
    Thompson, W. R., Hayek, C. S., Tuchinda, C., Telford, J. K., & Lombardo, J. S. (2001). Automated cardiac auscultation for detection of pathologic heart murmurs. Pediatric Cardiology, 22(5), 373–379.CrossRefGoogle Scholar
  23. 23.
    Jiang, Z., & Choi, S. (2006). A cardiac sound characteristic waveform method for in-home heart disorder monitoring with electric stethoscope. Expert Systems with Applications, 31(2), 286–298.CrossRefGoogle Scholar
  24. 24.
    Reed, T. R., Reed, N. E., & Fritzson, P. (2004). Heart sound analysis for symptom detection and computer-aided diagnosis. Simulation Modelling Practice and Theory, 12(2), 129–146.CrossRefGoogle Scholar
  25. 25.
    Akay, M., Semmlow, J. L., Welkowitz, W., Bauer, M. D., & Kostis, J. B. (1990). Detection of coronary occlusions using autoregressive modeling of diastolic heart sounds. IEEE Transactions on Biomedical Engineering, 37(4), 366–373.CrossRefGoogle Scholar
  26. 26.
    Ari, S., Hembram, K., & Saha, G. (2010). Detection of cardiac abnormality from PCG signal using LMS based least square SVM classifier. Expert Systems with Applications, 37(12), 8019–8026.CrossRefGoogle Scholar
  27. 27.
    Wood, J. C., & Barry, D. T. (1996). Time-frequency analysis of skeletal muscle and cardiac vibrations. Proceedings of the IEEE, 84(9), 1281–1294.CrossRefGoogle Scholar
  28. 28.
    Seo, J. H., & Mittal, R. (2011). A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries. Journal of Computational Physics, 230(4), 1000–1019.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ibarra-Hernández, R. F., Alonso-Arévalo, M. A., Cruz-Gutiérrez, A., Licona-Chávez, A. L., & Villarreal-Reyes, S. (2017). Design and evaluation of a parametric model for cardiac sounds. Computers in Biology and Medicine, 89, 170–180.CrossRefGoogle Scholar
  30. 30.
    Kong, Y., Jenkinson, M., Andersson, J., Tracey, I., & Brooks, J. C. (2012). Assessment of physiological noise modelling methods for functional imaging of the spinal cord. NeuroImage, 60(2), 1538–1549.CrossRefGoogle Scholar
  31. 31.
    Ryu, K., Keel, A., Hellman, H., & Svensson, T. (2013). U.S. Patent No. 8,583,230. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
  32. 32.
    Gayeski, N., McMillan, B., & Trotter, P. (2011). Historical abundance of Puget Sound steelhead, Oncorhynchus mykiss, estimated from catch record data. Canadian Journal of Fisheries and Aquatic Sciences, 68(3), 498–510.CrossRefGoogle Scholar
  33. 33.
    Malone, D. J. (2006). Cardiovascular diseases and disorders. In Physical therapy in acute care: A clinician’s guide (pp. 139–209). Thorofare, NJ: Slack.Google Scholar
  34. 34.
    Rabinovitch, M. (2011). 5 pulmonary vascular pathophysiology. Pediatric Cardiovascular Medicine.Google Scholar
  35. 35.
    Rosen, D. A., & Rosen, K. R. (2005). Anomalies of the aortic arch and valve. In Pediatric cardiac anesthesia (pp. 381–424). Philadelphia: Lippincott Williams & Wilkins.Google Scholar
  36. 36.
    Silberbach, M., & Hannon, D. (2007). Presentation of congenital heart disease in the neonate and young infant. Pediatrics in Review, 28(4), 123.CrossRefGoogle Scholar
  37. 37.
    Bergeron, B. P., & Greenes, R. A. (1989). Clinical skill-building simulations in cardiology: HeartLab and EkgLab. Computer Methods and Programs in Biomedicine, 30(2–3), 111–126.CrossRefGoogle Scholar
  38. 38.
    Bergeron, B. P. (1988). HeartLab: A multi-mode simulation for teaching cardiac auscultation. SIMULATION, 50(2), 50–60.CrossRefGoogle Scholar
  39. 39.
    Ducharme, F. M., Sze, M. T., & Chauhan, B. (2014). Diagnosis, management, and prognosis of preschool wheeze. The Lancet, 383(9928), 1593–1604.Google Scholar
  40. 40.
    Everard, M. L. (2006). The relationship between respiratory syncytial virus infections and the development of wheezing and asthma in children. Current Opinion in Allergy and Clinical Immunology, 6(1), 56–61.CrossRefGoogle Scholar
  41. 41.
    Schreur, H. J., Vanderschoot, J., Zwinderman, A. H., Dijkman, J. H., & Sterk, P. J. (1994). Abnormal lung sounds in patients with asthma during episodes with normal lung function. Chest, 106(1), 91–99.CrossRefGoogle Scholar
  42. 42.
    Bush, A. (2007). Diagnosis of asthma in children under five. Primary Care Respiratory Journal, 16(1), 7.CrossRefGoogle Scholar
  43. 43.
    Corcoran, B. M., Foster, D. J., & Fuentes, V. L. (1995). Feline asthma syndrome: A retrospective study of the clinical presentation in 29 cats. Journal of Small Animal Practice, 36(11), 481–488.CrossRefGoogle Scholar
  44. 44.
    Kaniusas, E. (2007). Acoustical signals of biomechanical systems. In Biomechanical systems technology: Volume 4: General anatomy (pp. 1–44).Google Scholar
  45. 45.
    Hadjileontiadis, L. J., Rekanos, I. T., & Panas, S. M. (2006). Bioacoustic signals. Wiley Encyclopedia of Biomedical Engineering.Google Scholar
  46. 46.
    Kaniusas, E. (2015). Sensing by acoustic biosignals. In Biomedical signals and sensors II (pp. 1–90). Berlin\Heidelberg: Springer.Google Scholar
  47. 47.
    Racz, L., Yamamoto, D. P., & Eninger, R. M. (Eds.). (2017). Handbook of respiratory protection: Safeguarding against current and emerging hazards. CRC Press.Google Scholar
  48. 48.
    Vanek, V. W., & Al-Salti, M. (1986). Acute pseudo-obstruction of the colon (Ogilvie’s syndrome). Diseases of the Colon & Rectum, 29(3), 203–210.CrossRefGoogle Scholar
  49. 49.
    De Block, C. E., Leeuw, I. H., & Gaal, L. F. (1999). Premenstrual attacks of acute intermittent porphyria: Hormonal and metabolic aspects-a case report. European Journal of Endocrinology, 141(1), 50–54.CrossRefGoogle Scholar
  50. 50.
    McMillan, S. C. (2004). Assessing and managing opiate-induced constipation in adults with cancer. Cancer Control, 11(3_suppl), 3–9.CrossRefGoogle Scholar
  51. 51.
    Felder, S., Margel, D., Murrell, Z., & Fleshner, P. (2014). Usefulness of bowel sound auscultation: A prospective evaluation. Journal of Surgical Education, 71(5), 768–773.CrossRefGoogle Scholar
  52. 52.
    Cannon, W. B. (1905). Auscultation of the rhythmic sounds produced by the stomach and intestines. American Journal of Physiology-Legacy Content, 14(4), 339–353.MathSciNetCrossRefGoogle Scholar
  53. 53.
    Leng, S., San Tan, R., Chai, K. T. C., Wang, C., Ghista, D., & Zhong, L. (2015). The electronic stethoscope. Biomedical Engineering Online, 14(1), 66.CrossRefGoogle Scholar
  54. 54.
    Holmgren, C. (1992). Abdominal assessment. RN, 55(3), 28–34.MathSciNetGoogle Scholar
  55. 55.
    Olmstead, C. D., Miller, C. G., Woods, J., & Dhingra, S. (2015). U.S. Patent Application No. 14/606,487.Google Scholar
  56. 56.
    Boulpaep, E. L. (2012). Organization of the cardiovascular system. Medical Physiology, 429–447.Google Scholar
  57. 57.
    Collins, S. L., Sinsabaugh, R. L., Crenshaw, C., Green, L., Porras‐Alfaro, A., Stursova, M., & Zeglin, L. H. (2008). Pulse dynamics and microbial processes in aridland ecosystems. Journal of Ecology, 96(3), 413–420.Google Scholar
  58. 58.
    Bacharach, J. M., Biller, J., Fine, L. J., Gray, B. H., Gray, W. A., Gupta, R., Hamburg, N. M., Katzen, B. T., Lookstein, R. A., Lumsden, A. B., Newburger, J. W., Rundek, T., Sperati, C. J., Stanley, J. C., American Heart Association Council on Peripheral Vascular Disease, American Heart Association Council on Clinical Cardiology, American Heart Association Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation; American Heart Association Council on Cardiovascular Disease in the Young, American Heart Association Council on Cardiovascular Radiology and Intervention; American Heart Association Council on Epidemiology and Prevention, American Heart Association Council on Functional Genomics and Translational Biology, American Heart Association Council for High Blood Pressure Research, American Heart Association Council on the Kidney in Cardiovascular Disease, & American Heart Association Stroke Council. (2014). Fibromuscular dysplasia: State of the science and critical unanswered questions. Circulation, 129, 1048–1078.CrossRefGoogle Scholar
  59. 59.
    Nagasaka, Y. (2012). Lung sounds in bronchial asthma. Allergology International, 61(3), 353–363.CrossRefGoogle Scholar
  60. 60.
    Moussavi, Z. (2006). Fundamentals of respiratory sounds and analysis. Synthesis Lectures on Biomedical Engineering, 1(1), 1–68.MathSciNetCrossRefGoogle Scholar
  61. 61.
    Winland-Brown, J. E., & Klause, K. T. (2017). Respiratory problems. Family practice and adult-gerontology primary care nurse practitioner certification examination review questions and strategies, p. 239.Google Scholar
  62. 62.
    Dokur, Z., & Ölmez, T. (2008). Heart sound classification using wavelet transform and incremental self-organizing map. Digital Signal Processing, 18(6), 951–959.CrossRefGoogle Scholar
  63. 63.
    Naseri, H., & Homaeinezhad, M. R. (2013). Detection and boundary identification of phonocardiogram sounds using an expert frequency-energy based metric. Annals of Biomedical Engineering, 41(2), 279–292.CrossRefGoogle Scholar
  64. 64.
    Choi, S., & Jiang, Z. (2008). Comparison of envelope extraction algorithms for cardiac sound signal segmentation. Expert Systems with Applications, 34(2), 1056–1069.CrossRefGoogle Scholar
  65. 65.
    Dokur, Z., & Ölmez, T. (2009). Feature determination for heart sounds based on divergence analysis. Digital Signal Processing, 19(3), 521–531.CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nilanjan Dey
    • 1
  • Amira S. Ashour
    • 2
  • Waleed S. Mohamed
    • 3
  • Nhu Gia Nguyen
    • 4
  1. 1.Department of Information TechnologyTechno India College of TechnologyKolkataIndia
  2. 2.Department of Electronics and Electrical Communications EngineeringFaculty of Engineering, Tanta UniversityTantaEgypt
  3. 3.Department of Internal MedicineFaculty of Medicine, Tanta UniversityTantaEgypt
  4. 4.Graduate SchoolDuy Tan UniversityDa Nang CityVietnam

Personalised recommendations