• Nilanjan Dey
  • Amira S. Ashour
  • Waleed S. Mohamed
  • Nhu Gia Nguyen
Part of the SpringerBriefs in Speech Technology book series (BRIEFSSPEECHTECH)


The interface between the physical sciences, electronics, and life sciences becomes inhabited by several researchers to fulfill the needs of the medical/life scientist in the biomedical community. Based on the chemical, biological, and physical principles, the instruments improvement burgeoned. Conversely, the analytical instruments require several types of sensors extending from elementary devices for temperature and flow measurements, nonionizing and ionizing radiation to biological, chemical, ultrasound, and acoustic sensing transducers [1–9].


Electronic devices Sensors Detectors Signal acquisition Biosignals 


  1. 1.
    Campajola, L., & Di Capua, F. (2016). Applications of accelerators and radiation sources in the field of space research and industry. Topics in Current Chemistry, 374(6), 84.CrossRefGoogle Scholar
  2. 2.
    Duan, X., Huang, Y., Cui, Y., Wang, J., & Lieber, C. M. (2001). Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 409(6816), 66.Google Scholar
  3. 3.
    Hughes, P. G., Votava, O., West, M. B., Zhang, F., & Kable, S. H. (2005). Pulsed oscillating mass spectrometer: A miniaturized type of time-of-flight mass spectrometer. Analytical Chemistry, 77(14), 4448–4452.CrossRefGoogle Scholar
  4. 4.
    Rivetti, A. (2015). CMOS: Front-end electronics for radiation sensors (Vol. 42). Boca Raton: CRC Press.Google Scholar
  5. 5.
    Chatterjee, S., Hore, S., Dey, N., Chakraborty, S., & Ashour, A. S. (2017). Dengue fever classification using gene expression data: A PSO based artificial neural network approach. In Proceedings of the 5th international conference on frontiers in intelligent computing: Theory and applications (pp. 331–341). Singapore: Springer.CrossRefGoogle Scholar
  6. 6.
    Dey, N., Ashour, A. S., Shi, F., & Sherratt, R. S. (2017). Wireless capsule gastrointestinal endoscopy: Direction-of-arrival estimation based localization survey. IEEE Reviews in Biomedical Engineering, 10, 2–11.CrossRefGoogle Scholar
  7. 7.
    Ashour, A. S., & Dey, N. (2016). Adaptive window bandwidth selection for direction of arrival estimation of uniform velocity moving targets based relative intersection confidence interval technique. Ain Shams Engineering Journal.Google Scholar
  8. 8.
    Skoog, D. A., Holler, F. J., & Crouch, S. R. (2017). Principles of instrumental analysis. New York: Cengage Learning.Google Scholar
  9. 9.
    Franssila, S. (2010). Introduction to microfabrication. Chichester: Wiley.CrossRefGoogle Scholar
  10. 10.
    OKOYE, G. C. (2008). Biomedical technology and health human life. Biomedical Engineering, 1, 12.Google Scholar
  11. 11.
    Castano, L. M., & Flatau, A. B. (2014). Smart fabric sensors and e-textile technologies: A review. Smart Materials and Structures, 23(5), 053001.CrossRefGoogle Scholar
  12. 12.
    Sun, Y., & Yu, X. B. (2016). Capacitive biopotential measurement for electrophysiological signal acquisition: A review. IEEE Sensors Journal, 16(9), 2832–2853.CrossRefGoogle Scholar
  13. 13.
    Korotcenkov, G. (Ed.). (2011). Chemical sensors: Comprehensive sensor technologies volume 6: Chemical sensors applications (Vol. 6). New York: Momentum Press.Google Scholar
  14. 14.
    Gospodinova, E., Gospodinov, M., Dey, N., Domuschiev, I., Ashour, A. S., & Sifaki-Pistolla, D. (2015). Analysis of heart rate variability by applying nonlinear methods with different approaches for graphical representation of results. Analysis, 6(8).Google Scholar
  15. 15.
    RajaRajeswari, P., Raju, S. V., Ashour, A. S., Dey, N., & Balas, V. E. (2016, June). Active site cavities identification of amyloid beta precursor protein: Alzheimer disease study. In Intelligent Engineering Systems (INES), 2016 IEEE 20th Jubilee International Conference on (pp. 319–324). IEEE.Google Scholar
  16. 16.
    Kamal, M. S., Chowdhury, L., Khan, M. I., Ashour, A. S., Tavares, J. M. R., & Dey, N. (2017). Hidden Markov model and Chapman Kolmogrov for protein structures prediction from images. Computational Biology and Chemistry, 68, 231–244.CrossRefGoogle Scholar
  17. 17.
    Liu, K. K., Wu, R. G., Chuang, Y. J., Khoo, H. S., Huang, S. H., & Tseng, F. G. (2010). Microfluidic systems for biosensing. Sensors, 10(7), 6623–6661.CrossRefGoogle Scholar
  18. 18.
    Nichols, S. P., Koh, A., Storm, W. L., Shin, J. H., & Schoenfisch, M. H. (2013). Biocompatible materials for continuous glucose monitoring devices. Chemical Reviews, 113(4), 2528–2549.CrossRefGoogle Scholar
  19. 19.
    Eggins, B. R. (2008). Chemical sensors and biosensors (Vol. 28). Chichester: Wiley.Google Scholar
  20. 20.
    Graf, R. F. (1999). Modern dictionary of electronics. Oxford: Newnes.Google Scholar
  21. 21.
    De Marcellis, A., & Ferri, G. (2011). Analog circuits and systems for voltage-mode and current-mode sensor interfacing applications. Springer Science & Business Media.Google Scholar
  22. 22.
    Karaa, W. B. A., Mannai, M., Dey, N., Ashour, A. S., & Olariu, I. (2016, August). Gene-disease-food relation extraction from biomedical database. In International workshop soft computing applications (pp. 394–407). Cham: Springer.Google Scholar
  23. 23.
    Chatterjee, S., Dey, N., Shi, F., Ashour, A. S., Fong, S. J., & Sen, S. (2017). Clinical application of modified bag-of-features coupled with hybrid neural-based classifier in dengue fever classification using gene expression data. Medical & Biological Engineering & Computing, 1–12.Google Scholar
  24. 24.
    Holford, S. K. (1981). Discontinuous adventitious lung sounds: measurement, classification, and modeling.Google Scholar
  25. 25.
    Collins, S. A. (1990). Sensors for structural control applications using piezoelectric polymer film (Doctoral dissertation, Massachusetts Institute of Technology).Google Scholar
  26. 26.
    Hebra, A. J. (2010). Acoustics. In The physics of metrology (pp. 271–299). Vienna: Springer.CrossRefGoogle Scholar
  27. 27.
    Dufresne, J. R., Carim, H. M., & Drummond, T. E. (2013). U.S. Patent No. 8,548,174. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
  28. 28.
    Semmlow, J. L., & Griffel, B. (2014). Biosignal and medical image processing. Boca Raton: CRC press.Google Scholar
  29. 29.
    Patel, H. K. (2016). The electronic nose: Artificial olfaction technology. Ahmedabad: Springer.Google Scholar
  30. 30.
    Dey, N., & Ashour, A. S. (2018). Microphone array principles. In Direction of arrival estimation and localization of multi-speech sources (pp. 5–22). Cham: Springer.CrossRefGoogle Scholar
  31. 31.
    Dey, N., & Ashour, A. S. (2018). Challenges and future perspectives in speech-sources direction of arrival estimation and localization. In Direction of arrival estimation and localization of multi-speech sources (pp. 49–52). Cham: Springer.CrossRefGoogle Scholar
  32. 32.
    Dey, N., Ashour, A. S., Shi, F., Fong, S. J., & Tavares, J. M. R. (2018). Medical cyber-physical systems: A survey. Journal of Medical Systems, 42(4), 74.CrossRefGoogle Scholar
  33. 33.
    Dey, N., & Ashour, A. S. (2017). Ambient intelligence in healthcare: A state-of-the-art. Global Journal of Computer Science and Technology.Google Scholar
  34. 34.
    Kumar, L. A., & Vigneswaran, C. (2015). Electronics in textiles and clothing: Design, products and applications. Boca Raton: CRC Press.CrossRefGoogle Scholar
  35. 35.
    Nihonyanagi, S., Eftekhari-Bafrooei, A., Hines, J., & Borguet, E. (2008). Self-assembled monolayer compatible with metal surface acoustic wave devices on lithium niobate. Langmuir, 24(9), 5161–5165.CrossRefGoogle Scholar
  36. 36.
    Fu, Y. Q., Luo, J., Flewitt, A., Walton, A., Desmulliez, M., & Milne, W. (2016). Piezoelectric zinc oxide and aluminum nitride films for microfluidic and biosensing applications. Biological and Biomedical Coatings Handbook Applications, 335.Google Scholar
  37. 37.
    Caliendo, C., Contini, G., Fratoddi, I., Irrera, S., Pertici, P., Scavia, G., & Russo, M. V. (2007). Nanostructured organometallic polymer and palladium/polymer hybrid: surface investigation and sensitivity to relative humidity and hydrogen in surface acoustic wave sensors. Nanotechnology, 18(12), 125504.Google Scholar
  38. 38.
    Campifelli, A., Bartic, C., Friedt, J. M., De Keersmaecker, K., Laureyn, W., Francis, L., Frederix, F., Reekmans, G., Angelova, A., Suls, J., Bonroy, K., De Palma, R., Cheng, Z., & Borghs G. (2003, September). Development of microelectronic based biosensors. In Custom Integrated Circuits Conference, 2003. Proceedings of the IEEE 2003 (pp. 505–512). IEEE.Google Scholar

Copyright information

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nilanjan Dey
    • 1
  • Amira S. Ashour
    • 2
  • Waleed S. Mohamed
    • 3
  • Nhu Gia Nguyen
    • 4
  1. 1.Department of Information TechnologyTechno India College of TechnologyKolkataIndia
  2. 2.Department of Electronics and Electrical Communications EngineeringFaculty of Engineering, Tanta UniversityTantaEgypt
  3. 3.Department of Internal MedicineFaculty of Medicine, Tanta UniversityTantaEgypt
  4. 4.Graduate SchoolDuy Tan UniversityDa Nang CityVietnam

Personalised recommendations