Liver Cancers pp 227-243 | Cite as

Novel Treatments for Advanced Cholangiocarcinoma

  • Jenny Cotton
  • Angela Lamarca
  • Mairéad G. McNamara
  • Juan W. ValleEmail author


Cholangiocarcinoma (intrahepatic, hilar or extrahepatic [distal bile duct]) is an aggressive malignancy with unmet treatment needs in the advanced setting. The current first-line standard of care for patients with locally advanced or metastatic biliary tract cancer is the combination of cisplatin and gemcitabine chemotherapy. The median overall survival for these patients is less than 1 year, and novel treatment approaches are mandated. Locoregional therapy such as chemosaturation, chemoembolisation, ablation and radiation-based approaches have been assessed in small, early phase trials and retrospective series and show some promise in local control and overall survival in the locally advanced and palliative setting, but results of prospective randomised trials will evaluate the magnitude of benefit compared to currently available options. Novel therapy clinical trials targeting the isocitrate dehydrogenase 1 and fibroblast growth factor receptor 2 fusion mutations are ongoing, and the use of immune checkpoint inhibitors in this disease is being investigated. A greater understanding of cholangiocarcinoma biology, its oncogenic landscape and complex interaction with the tumour microenvironment and immune response is imperative to optimise patient’s quality of life and survival.


Cholangiocarcinoma Advanced disease Locoregional treatment Targeted therapy Immunotherapy 


  1. 1.
    Khan SA, et al. Guidelines for the diagnosis and treatment of cholangiocarcinoma: an update. Gut. 2012;61(12):1657–69.CrossRefGoogle Scholar
  2. 2.
    Tabata M, et al. Surgical treatment for hilar cholangiocarcinoma. J Hepato-Biliary-Pancreat Surg. 2000;7(2):148–54.CrossRefGoogle Scholar
  3. 3.
    Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet. 2014;383(9935):2168–79.CrossRefGoogle Scholar
  4. 4.
    Salgado SM, Gaidhane M, Kahaleh M. Endoscopic palliation of malignant biliary strictures. World J Gastrointest Oncol. 2016;8(3):240–7.CrossRefGoogle Scholar
  5. 5.
    Basch E, et al. Overall survival results of a trial assessing patient-reported outcomes for symptom monitoring during routine cancer treatment. JAMA. 2017;318(2):197–8.CrossRefGoogle Scholar
  6. 6.
    Valle J, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010;362(14):1273–81.CrossRefGoogle Scholar
  7. 7.
    Lamarca A, et al. Second-line chemotherapy in advanced biliary cancer: a systematic review. Ann Oncol. 2014;25(12):2328–38.CrossRefGoogle Scholar
  8. 8.
    Borad MJ, et al. Phase 2, open-label, multicenter study of the efficacy and safety of INCB054828 in patients (pts) with advanced, metastatic, or surgically unresectable cholangiocarcinoma (CCA) with inadequate response to prior therapy. J Clin Oncol. 2017;35(15_suppl):TPS4145.CrossRefGoogle Scholar
  9. 9.
    Lowery MA, et al. ClarIDHy: a phase 3, multicenter, randomized, double-blind study of AG-120 vs placebo in patients with an advanced cholangiocarcinoma with an IDH1 mutation. J Clin Oncol. 2017;35(15_suppl):TPS4142.CrossRefGoogle Scholar
  10. 10.
    Boehm LM, et al. Comparative effectiveness of hepatic artery based therapies for unresectable intrahepatic cholangiocarcinoma. J Surg Oncol. 2015;111(2):213–20.CrossRefGoogle Scholar
  11. 11.
    Vogel A, et al. Chemosaturation percutaneous hepatic perfusion: a systematic review. Adv Ther. 2017;33(12):2122–38.CrossRefGoogle Scholar
  12. 12.
    Hughes MS, et al. Results of a randomized controlled multicenter phase III trial of percutaneous hepatic perfusion compared with best available care for patients with melanoma liver metastases. Ann Surg Oncol. 2016;23(4):1309–19.CrossRefGoogle Scholar
  13. 13.
    Vogl TJ, et al. Chemosaturation with percutaneous hepatic perfusions of melphalan for hepatic metastases: experience from two European centers. Rofo. 2014;186(10):937–44.CrossRefGoogle Scholar
  14. 14.
    Pingpank JF, et al. Phase I study of hepatic arterial melphalan infusion and hepatic venous hemofiltration using percutaneously placed catheters in patients with unresectable hepatic malignancies. J Clin Oncol. 2005;23(15):3465–74.CrossRefGoogle Scholar
  15. 15.
    Aliberti C, et al. Chemoembolization (TACE) of unresectable intrahepatic cholangiocarcinoma with slow-release doxorubicin-eluting beads: preliminary results. Cardiovasc Intervent Radiol. 2008;31(5):883–8.CrossRefGoogle Scholar
  16. 16.
    Kuhlmann JB, et al. Treatment of unresectable cholangiocarcinoma: conventional transarterial chemoembolization compared with drug eluting bead-transarterial chemoembolization and systemic chemotherapy. Eur J Gastroenterol Hepatol. 2012;24(4):437–43.PubMedGoogle Scholar
  17. 17.
    Ball C, Thomson KR, Kavnoudias H. Irreversible electroporation: a new challenge in “out of operating theater” anesthesia. Anesth Analg. 2010;110(5):1305–9.CrossRefGoogle Scholar
  18. 18.
    Onik G, Mikus P, Rubinsky B. Irreversible electroporation: implications for prostate ablation. Technol Cancer Res Treat. 2007;6(4):295–300.CrossRefGoogle Scholar
  19. 19.
    Giorgio A, et al. Radiofrequency ablation for intrahepatic cholangiocarcinoma: retrospective analysis of a single centre experience. Anticancer Res. 2011;31(12):4575–80.PubMedGoogle Scholar
  20. 20.
    Xu HX, et al. Percutaneous ultrasound-guided thermal ablation for intrahepatic cholangiocarcinoma. Br J Radiol. 2012;85(1016):1078–84.CrossRefGoogle Scholar
  21. 21.
    Fu Y, et al. Radiofrequency ablation in the management of unresectable intrahepatic cholangiocarcinoma. J Vasc Interv Radiol. 2012;23(5):642–9.CrossRefGoogle Scholar
  22. 22.
    Kim JH, et al. Radiofrequency ablation for the treatment of primary intrahepatic cholangiocarcinoma. AJR Am J Roentgenol. 2011;196(2):W205–9.CrossRefGoogle Scholar
  23. 23.
    Jung DH, et al. Outcomes of stereotactic body radiotherapy for unresectable primary or recurrent cholangiocarcinoma. Radiat Oncol J. 2014;32(3):163–9.CrossRefGoogle Scholar
  24. 24.
    Mahadevan A, et al. Stereotactic body radiotherapy (SBRT) for intrahepatic and hilar cholangiocarcinoma. J Cancer. 2015;6(11):1099–104.CrossRefGoogle Scholar
  25. 25.
    Polistina FA, et al. Chemoradiation treatment with gemcitabine plus stereotactic body radiotherapy for unresectable, non-metastatic, locally advanced hilar cholangiocarcinoma. Results of a five year experience. Radiother Oncol. 2011;99(2):120–3.CrossRefGoogle Scholar
  26. 26.
    Tse RV, et al. Phase I study of individualized stereotactic body radiotherapy for hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Clin Oncol. 2008;26(4):657–64.CrossRefGoogle Scholar
  27. 27.
    Al-Adra DP, et al. Treatment of unresectable intrahepatic cholangiocarcinoma with yttrium-90 radioembolization: a systematic review and pooled analysis. Eur J Surg Oncol. 2015;41(1):120–7.CrossRefGoogle Scholar
  28. 28.
    Hong TS, et al. Multi-institutional phase II study of high-dose hypofractionated proton beam therapy in patients with localized, unresectable hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Clin Oncol. 2016;34(5):460–8.CrossRefGoogle Scholar
  29. 29.
    Ritter CA, Arteaga CL. The epidermal growth factor receptor-tyrosine kinase: a promising therapeutic target in solid tumors. Semin Oncol. 2003;30(1 Suppl 1):3–11.CrossRefGoogle Scholar
  30. 30.
    Paule B, et al. Cetuximab plus gemcitabine-oxaliplatin (GEMOX) in patients with refractory advanced intrahepatic cholangiocarcinomas. Oncology. 2007;72(1–2):105–10.CrossRefGoogle Scholar
  31. 31.
    Chen L-T, et al. KRAS mutation status-stratified randomized phase II trial of GEMOX with and without cetuximab in advanced biliary tract cancer (ABTC): The TCOG T1210 trial. J Clin Oncol. 2013;31(15_suppl):4018.Google Scholar
  32. 32.
    Lee J, et al. Gemcitabine and oxaliplatin with or without erlotinib in advanced biliary-tract cancer: a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2012;13(2):181–8.CrossRefGoogle Scholar
  33. 33.
    Malka D, et al. Gemcitabine and oxaliplatin with or without cetuximab in advanced biliary-tract cancer (BINGO): a randomised, open-label, non-comparative phase 2 trial. Lancet Oncol. 2014;15(8):819–28.CrossRefGoogle Scholar
  34. 34.
    Leone F, et al. Panitumumab in combination with gemcitabine and oxaliplatin does not prolong survival in wild-type KRAS advanced biliary tract cancer: a randomized phase 2 trial (Vecti-BIL study). Cancer. 2016;122(4):574–81.CrossRefGoogle Scholar
  35. 35.
    Vogel A, et al. Panitumumab in combination with gemcitabine/cisplatin (GemCis) for patients with advanced kRAS WT biliary tract cancer: a randomized phase II trial of the Arbeitsgemeinschaft Internistische Onkologie (AIO). J Clin Oncol. 2015;33(15_suppl):4082.Google Scholar
  36. 36.
    Philip PA, et al. Phase II study of erlotinib in patients with advanced biliary cancer. J Clin Oncol. 2006;24(19):3069–74.CrossRefGoogle Scholar
  37. 37.
    Gruenberger B, et al. Cetuximab, gemcitabine, and oxaliplatin in patients with unresectable advanced or metastatic biliary tract cancer: a phase 2 study. Lancet Oncol. 2010;11(12):1142–8.CrossRefGoogle Scholar
  38. 38.
    Valle JW, et al. Cediranib or placebo in combination with cisplatin and gemcitabine chemotherapy for patients with advanced biliary tract cancer (ABC-03): a randomised phase 2 trial. Lancet Oncol. 2015;16(8):967–78.CrossRefGoogle Scholar
  39. 39.
    Lubner SJ, et al. Report of a multicenter phase II trial testing a combination of biweekly bevacizumab and daily erlotinib in patients with unresectable biliary cancer: a phase II Consortium study. J Clin Oncol. 2010;28(21):3491–7.CrossRefGoogle Scholar
  40. 40.
    Herbst RS, et al. Phase I/II trial evaluating the anti-vascular endothelial growth factor monoclonal antibody bevacizumab in combination with the HER-1/epidermal growth factor receptor tyrosine kinase inhibitor erlotinib for patients with recurrent non-small-cell lung cancer. J Clin Oncol. 2005;23(11):2544–55.CrossRefGoogle Scholar
  41. 41.
    Thomas MB, et al. Phase II trial of the combination of bevacizumab and erlotinib in patients who have advanced hepatocellular carcinoma. J Clin Oncol. 2009;27(6):843–50.CrossRefGoogle Scholar
  42. 42.
    Ochiiwa H, et al. Abstract A270: TAS-120, a highly potent and selective irreversible FGFR inhibitor, is effective in tumors harboring various FGFR gene abnormalities. Mol Cancer Ther. 2013;12(11 Supplement):A270.CrossRefGoogle Scholar
  43. 43.
    Mazzaferro V, et al. ARQ 087, an oral pan-fibroblast growth factor receptor (FGFR) inhibitor, in patients (pts) with advanced intrahepatic cholangiocarcinoma (iCCA) with FGFR2 genetic aberrations. J Clin Oncol. 2017;35(15_suppl):4017.CrossRefGoogle Scholar
  44. 44.
    Arai Y, et al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology. 2014;59(4):1427–34.CrossRefGoogle Scholar
  45. 45.
    Nogova L, et al. Evaluation of BGJ398, a fibroblast growth factor receptor 1-3 kinase inhibitor, in patients with advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors: results of a global phase I, dose-escalation and dose-expansion study. J Clin Oncol. 2017;35(2):157–65.CrossRefGoogle Scholar
  46. 46.
    Javle M, et al. Phase II study of BGJ398 in patients with FGFR-altered advanced cholangiocarcinoma. J Clin Oncol. 2018;36(3):276–82.CrossRefGoogle Scholar
  47. 47.
    Kim RD, et al. SWOG S1310: randomized phase II trial of single agent MEK inhibitor trametinib vs. 5-fluorouracil or capecitabine in refractory advanced biliary cancer. J Clin Oncol. 2017;35(15_suppl):4016.CrossRefGoogle Scholar
  48. 48.
    Fontugne J, et al. PD-L1 expression in perihilar and intrahepatic cholangiocarcinoma. Oncotarget. 2017;8(15):24644–51.CrossRefGoogle Scholar
  49. 49.
    Topalian SL, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.CrossRefGoogle Scholar
  50. 50.
    Czink E, et al. Successful immune checkpoint blockade in a patient with advanced stage microsatellite unstable biliary tract cancer. Cold Spring Harb Mol Case Stud. 2017;3(5)CrossRefGoogle Scholar
  51. 51.
    Hause RJ, et al. Classification and characterization of microsatellite instability across 18 cancer types. Nat Med. 2016;22(11):1342–50.CrossRefGoogle Scholar
  52. 52.
    Sabbatino F, et al. PD-L1 and HLA Class I antigen expression and clinical course of the disease in intrahepatic cholangiocarcinoma. Clin Cancer Res. 2016;22(2):470–8.CrossRefGoogle Scholar
  53. 53.
    Le DT, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.CrossRefGoogle Scholar
  54. 54.
    Bang YJ, et al. 525 Safety and efficacy of pembrolizumab (MK-3475) in patients (pts) with advanced biliary tract cancer: interim results of KEYNOTE-028. Eur J Cancer. 2015;51:S112.CrossRefGoogle Scholar
  55. 55.
    Yu L, et al. Mesothelin as a potential therapeutic target in human cholangiocarcinoma. J Cancer. 2010;1:141–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jenny Cotton
    • 1
    • 2
  • Angela Lamarca
    • 1
  • Mairéad G. McNamara
    • 1
    • 3
  • Juan W. Valle
    • 1
    • 3
    Email author
  1. 1.Department of Medical OncologyThe Christie NHS Foundation TrustManchesterUK
  2. 2.Department of Medical OncologyThe Clatterbridge Cancer CentreWirralUK
  3. 3.Division of Cancer SciencesUniversity of ManchesterManchesterUK

Personalised recommendations