Advertisement

Remediation of Polycyclic Aromatic Hydrocarbons Using Nanomaterials

  • Manviri Rani
  • Uma Shanker
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 18)

Abstract

Polycyclic aromatic hydrocarbons are major contaminants in environmental bodies due to ubiquitous occurrence, toxicity and potential to bioaccumulation. Increased population, rapid industrialization and extensive use of oil fuels are one of the major cause of pollution by polycyclic aromatic hydrocarbons. Here, we review the issues related to polycyclic aromatic hydrocarbons (PAHs) and their removal techniques using nanoparticles through adsorption, photocatalytic and redox degradation. Among the dye removal techniques, adsorption was found best in terms of its efficiency and economy. For that, traditional techniques such as microbial, photolysis and conventional adsorbents such as commercial activated carbon, agricultural and natural waste are highly employed. Lately, low cost nanomaterials with high surface-area come out as most economic, rapid and effective green adsorbent cum photocatalyst under UV and sun-light irradiation. Green synthesized nanomaterials with advanced characteristics of adsorbent and photocatalysts are gaining importance in degradation of various organic-pollutants due to low cost of production and mediated effect of biogenic sources. We also discuss the use of TiO2, ZnO and metal hexacyanoferrate to remove polycyclic aromatic hydrocarbons pollution.

Keywords

Polycyclic aromatic hydrocarbons Nanomaterials Catalyst Degradation 

References

  1. Abdel-Shafy H, Mohamed-Mansour MS (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Petrol 25:107–123.  https://doi.org/10.1016/j.ejpe.2015.03.011 CrossRefGoogle Scholar
  2. Abrantes R, Assunção JV, Pesquero CR, Bruns RE, Nóbrega RB (2009) Emission of polycyclic aromatic hydrocarbons from gasohol and ethanol vehicles. Atmos Environ 43:648–654.  https://doi.org/10.1016/j.atmosenv.2008.10.014 CrossRefGoogle Scholar
  3. Agency for Toxic Substances and Disease Registry (1995) Toxicological profile for polycyclic aromatic hydrocarbons (PAHs). U.S. Department of Health and Human Services, Washington, DCGoogle Scholar
  4. Ahmed T, Ahmed MA, Othman DV, Sarwade KRG (2012) Degradation of Anthracene by Alkaliphilic Bacteria Bacillus badius. Environ Poll 1:97–104Google Scholar
  5. Altenburger R, Segner H, van der Oost R (2003) Biomarkers and PAHs – prospects for the assessment of exposure and effects in aquatic systems. In: PAHs: an ecotoxicological perspective. Wiley, Chichester, pp 297–328.  https://doi.org/10.1002/0470867132.ch16 CrossRefGoogle Scholar
  6. Anipsitakis GP, Dionysiou ESDD (2003) Radical generation by the interaction of transition metals with common oxidants. J Phys Chem B 109:13052–13055.  https://doi.org/10.1021/es035121o CrossRefGoogle Scholar
  7. Annweiler E, Richnow HH, Antranikian G, Hebenbrock S, Garms C, Franke S, Francke W, Michaelis W (2000) Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans. Appl Environ Microbiol 66:518–523CrossRefGoogle Scholar
  8. Asano M, Sumino S, Jiku F (2012) Decomposition of benzo (a) pyrene on artificial sea water using of UV/photocatalytic oxidation process. J Environ Sci Eng A 18:195–199Google Scholar
  9. ATSDR (Agency for Toxic Substances and Disease Registry) (1990) Toxicological profile for polycyclic aromatic hydrocarbons. Acenaphthene, Acenaphthylene, Anthracene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g,i,h)perylene, Benzo(k)fluoranthene, Chrysene, Dibenzo(a,h)anthracene, Fluoranthene, Fluorene, Indeno(1,2,3-c,d)pyrene, Phenanthrene, Pyrene. Prepared by Clement International Corporation, under contract no. 205-88-0608. ATSDR/TP-90-20Google Scholar
  10. Ayekoe PY, Robert D, Goné DL (2016) Preparation of effective TiO2/Bi2O3 photocatalysts for water treatment. Environ Chem Lett 14:387.  https://doi.org/10.1007/s10311-016-0565-3 CrossRefGoogle Scholar
  11. Bach QD, Kim SJ, Choi SC, Oh YS (2005) Enhancing the intrinsic bioremediation of PAHs contaminated anoxic estuarine sediments with biostimulating agents. J Microbiol 43:319–324Google Scholar
  12. Baird WM, Hooven LA, Mahadevan B (2005) Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mutagen 4:106–114.  https://doi.org/10.1002/em.20095 CrossRefGoogle Scholar
  13. Baklanov A, Hänninen O, Slørdal LH, Kukkonen J, Bjergene N, Fay B (2007) Integrated systems for forecasting urban meterology, air pollution and population exposure. Atmos Chem Phys 7:855–874.  https://doi.org/10.5194/acp-7-855-2007 CrossRefGoogle Scholar
  14. Bandala ER, Gelover S, Leal MT, Arancibia-Bulnes C, Jimenez A, Estrada CA (2002) Solar photocatalytic degradation of Aldrin. Catal Today 76:189–199.  https://doi.org/10.1016/S0920-5861(02)00218-3 CrossRefGoogle Scholar
  15. Bandala ER, Andres-Octaviano J, Pastrana P, Torres LG (2006) Removal of aldrin, dieldrin, heptachlor, and heptachlor epoxide using activated carbon and/or pseudomonas fluorescens free cell cultures. J Environ Sci Health B 41:553–569.  https://doi.org/10.1080/03601230600701700 CrossRefGoogle Scholar
  16. Barra R, Quiroz R, Saez K et al (2009) Sources of polycyclic aromatic hydrocarbons (PAHs) in sediments of the Biobio River in south Central Chile. Environ Chem Lett 7:133.  https://doi.org/10.1007/s10311-008-0148-z CrossRefGoogle Scholar
  17. Baruah S, Najam Khan M, Dutta J (2016) Perspectives and applications of nanotechnology in water treatment. Environ Chem Lett 14:1.  https://doi.org/10.1007/s10311-015-0542-2 CrossRefGoogle Scholar
  18. Bernal-Martínez A, Carrière H, Patureau D, Delgenè JP (2005) Combining anaerobic digestion and ozonation to remove PAH from urban sludge. Process Biochem 40:3244–3250.  https://doi.org/10.1016/j.procbio.2005.03.028 CrossRefGoogle Scholar
  19. Bonnia NN, Kamaruddin MS, Nawawi MH, Ratimd S, Azlinae HN, Ali ES (2016) Green biosynthesis of silver nanoparticles using ‘polygonum hydropiper’ and study its catalytic degradation of methylene blue. Procedia Chem 19:594–602.  https://doi.org/10.1016/j.proche.2016.03.058 CrossRefGoogle Scholar
  20. Brunekreef B, Janssen NA, de Hartog JJ, Oldenwening M, Meliefste K, Hoek G, Lanki T, Timonen KL, Vallius M, Pekkanen J, Van Grieken R (2005) Personal, indoor and outdoor exposures of PM25 and its components for groups of cardiovascular patients in Amsterdam and Helsinki. Res Rep Health Eff Inst 127:1–70Google Scholar
  21. Calvert JG, Atkinson R, Becker KH, Kamesns RM, Seinfeld JH, Wallington TH, Yarwood G (2002) The mechanisms of atmospheric oxidation of the aromatic hydrocarbons. Oxford University Press, New York, pp 370–383Google Scholar
  22. Campbell R, Clifford K (2010) Gulf spill is the largest of its kind, scientists say. The New York TimesGoogle Scholar
  23. Castaño P, Pawelec B, Fierro JLG, Arandes JM, Bilbao J (2006) Aromatics reduction of pyrolysis gasoline (PyGas) over HY-supported transition metal catalysts. Appl Catal A 315:101–113.  https://doi.org/10.1016/j.apcata.2006.09.009 CrossRefGoogle Scholar
  24. Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368.  https://doi.org/10.1007/BF00129093 CrossRefGoogle Scholar
  25. Chen X, Burda C (2008) The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J Am Chem Soc 130:5018–5019.  https://doi.org/10.1021/ja711023z CrossRefGoogle Scholar
  26. Chen YC, Lee WJ, Uang SN, Lee SH, Tsai PJ (2006) Characteristics of polycyclic aromatic hydrocarbon (PAH) emissions from a UH-1H helicopter engine and its impact on the ambient environment. Atmos Environ 40:7589–7597.  https://doi.org/10.1016/j.atmosenv.2006.06.054 CrossRefGoogle Scholar
  27. Chen S, Su B, Chang JE, Lee WJ, Huang KL, Hsieh LT, Huang JC, Lin WJ, Lin CC (2007) Emissions of polycyclic aromatic hydrocarbons (PAHs) from the pyrolysis of scrap tires. Atmos Environ 41:1209–1220.  https://doi.org/10.1016/j.atmosenv.2006.09.041 CrossRefGoogle Scholar
  28. Christensen HE, Fairchild EJ (1976) Registry of toxic effects of chemical substances. Prepared by Tracor Jitco Inc., Rockville, National Institute of Occupational Safety and Health, HEW Publication No. (NIOSH) 76–191Google Scholar
  29. Chupungars K, Rerngsamran P, Thaniyavarn S (2009) Polycyclic aromatic hydrocarbons degradation by Agrocybe sp. CU-43 and its fluorene transformation. Int Biodeterior Biodegrad 63:93–99CrossRefGoogle Scholar
  30. Connelly NG, Geiger WE (1996) Chemical redox agents for organometallic chemistry. Chem Rev 96:877–910.  https://doi.org/10.1021/cr940053x CrossRefGoogle Scholar
  31. Das P, Mukherjee S, Sen R (2008) Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. Chemosphere 72:1229–1234.  https://doi.org/10.1016/j.chemosphere.2008.05.015 CrossRefGoogle Scholar
  32. Dass S, Muneer M, Gopidas KR (1994) Photocatalytic degradation of wastewater pollutants. Titanium-dioxide-mediated oxidation of polynuclear aromatic hydrocarbons. J Photochem Photobiol A Chem 77:83–88.  https://doi.org/10.1016/1010-6030(94)80011-1 CrossRefGoogle Scholar
  33. Dong D, Li P, Li X, Zhao Q, Zhang Y, Jia C, Li P (2010a) Investigation on the photocatalytic degradation of pyrene on soil surfaces using nanometer anatase TiO2 under UV irradiation. J Hazard Mater 174:859–863.  https://doi.org/10.1016/j.jhazmat.2009.09.132 CrossRefGoogle Scholar
  34. Dong D, Li P, Li X, Xu C, Gong D, Zhang Y, Zhao Q, Li P (2010b) Photocatalytic degradation of phenanthrene and pyrene on soil surfaces in the presence of nanometer rutile TiO2 under UV-irradiation. Chem Eng J 158:378–383.  https://doi.org/10.1016/j.cej.2009.12.046 CrossRefGoogle Scholar
  35. Dubowsky SD, Wallace LA, Buckley TJ (1999) The contribution of traffic to indoor concentrations of polycyclic aromatic hydrocarbons. J Expo Anal Env Epid 9:312–321.  https://doi.org/10.1038/sj.jea.7500034 CrossRefGoogle Scholar
  36. Fabbri D, Vassura I (2006) Evaluating emission levels of polycyclic aromatic hydrocarbons from organic materials by analytical pyrolysis. J Anal Appl Pyrolysis 75:150–158CrossRefGoogle Scholar
  37. Fawell JK, Hunt S (1988) The polyaromatic hydrocarbons. Enviormental toxicology: organic pollutants. Ellis Harwood, Chichester, pp 241–269Google Scholar
  38. Freeman DJ, Cattell FCR (1990) Woodburning as a source of atmospheric polycyclic aromatic hydrocarbons. Environ Sci Technol 24:1581–1585.  https://doi.org/10.1021/es00080a019 CrossRefGoogle Scholar
  39. Freeman HM, Harris EF (1995) Hazardous waste remediation: innovative treatment technologies, 3rd edn. Technomic Publishing Company, Pennsylvania, p 463Google Scholar
  40. Fromme H, Oddoy A, Piloty M, Krause M, Lahrz T (1998) Polycyclic aromatic hydrocarbons (PAH) and diesel engine emission (elemental carbon) inside a car and a subway train. Sci Total Environ 217:165–173.  https://doi.org/10.1016/S0048-9697(98)00189-2 CrossRefGoogle Scholar
  41. Fu PP, Xia Q, Sun X, Yu H (2012) Phototoxicity and environmental transformation of polycyclic aromatic hydrocarbons (PAHs)-light induced reactive oxygen species, lipid peroxidation, and DNA damage. J Environ Sci Health Part C 30:1–41.  https://doi.org/10.1080/10590501.2012.653887 CrossRefGoogle Scholar
  42. Garon D, Sage L, Murandi FS (2004) Effects of fungal bioaugmentation and cyclodextrin amendment on fluorene degradation in soil slurry. Biodegradation 15:1–8CrossRefGoogle Scholar
  43. Ge XY, Tian F, Wu ZL, Yan YJ, Cravotto G, Wu ZS (2015) Adsorption of naphthalene from aqueous solution on coal-based activated carbon modified by microwave induction: microwave power effects. Chem Eng Process 91:67–77.  https://doi.org/10.1016/j.cep.2015.03.019 CrossRefGoogle Scholar
  44. Ghagi RK, Satpute SK, Chopade BA, Banpurkar AG (2002) Study of functional properties of Sapindusmukorossi as a potential biosurfactant. Indian J Sci Technol 4:530–533.  https://doi.org/10.17485/ijst/2011/v4i5/30055 CrossRefGoogle Scholar
  45. Goi A, Trapido M (2004) Degradation of polycyclic aromatic hydrocarbons in soil: the Fenton reagent versus ozonation. Environ Technol 25:155–164.  https://doi.org/10.1080/09593330409355448 CrossRefGoogle Scholar
  46. Griesbaum K, Behr A, Biedenkapp D, Voges HW, Garbe D, Paetz C, Collin G, Mayer D, Höke H (2002) Hydrocarbons. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim.  https://doi.org/10.1002/14356007.a13_227 CrossRefGoogle Scholar
  47. Gu J, Dong D, Kong L, Zheng Y, Li X (2012) Photocatalytic degradation of phenanthrene on soil surfaces in the presence of nanometer anatase TiO2 under UV-light. J Environ Sci 24:2122–2126.  https://doi.org/10.1016/S1001-0742(11)61063-2 CrossRefGoogle Scholar
  48. Guieysse B, Cirne MD, Mattiasson B (2001) Microbial degradation of phenanthrene and pyrene in a two-liquid phase partitioning bioreactor. Appl Microbiol Biotechnol 56:796–802.  https://doi.org/10.1007/s002530100706 CrossRefGoogle Scholar
  49. Guo W, He M, Yang Z, Lin C, Quan X, Wang H (2007) Distribution of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River watershed. Chemosphere 68:93–104.  https://doi.org/10.1016/j.chemosphere.2006.12.072 CrossRefGoogle Scholar
  50. Gupta H, Gupta B (2015) Photocatalytic degradation of polycyclic aromatic hydrocarbonbenzo[a]pyrene by iron oxides and identification of degradation products. Chemosphere 138:924–931.  https://doi.org/10.1016/j.chemosphere.2014.12.028 CrossRefGoogle Scholar
  51. Gupta B, Rani M, Kumar R, Dureja P (2011) Decay profile and metabolic pathways of quinalphos in water, soil and plants. Chemosphere 85:710–716.  https://doi.org/10.1016/j.chemosphere.2011.05.059 CrossRefGoogle Scholar
  52. Gupta B, Rani M, Kumar R (2012a) Degradation of thiraminwater, soil and plants: a study by high-performance liquid chromatography. Biomed Chromatogr 26(1):69–75.  https://doi.org/10.1002/bmc.1627 CrossRefGoogle Scholar
  53. Gupta B, Rani M, Kumar R, Dureja P (2012b) Identification of degradation products of thiram in water, soil and plants using LC-MS technique. J Environ Sci Health Part B 47:823–831.  https://doi.org/10.1080/03601234.2012.676487 CrossRefGoogle Scholar
  54. Gupta B, Rani M, Salunke R, Kumar R (2012c) In vitro and in vivo studies on degradation of quinalphos in rats. J Hazard Mater 213–214:285–291.  https://doi.org/10.1016/j.jhazmat.2012.01.089 CrossRefGoogle Scholar
  55. Hadibarata T, Tachibana S (2009) Enhanced chrysene biodegradation in presence of a synthetic surfactant. Obayashi Y, Isobe T, Subramanian A, Suzuki S, Tanabe S. Interdisciplinary studies on environmental chemistry-environmental research in Asia. 2:301–308Google Scholar
  56. Hadibarata T, Tachibana S, Itoh K (2009) Biodegradation of chrysene, an aromatic hydrocarbon by Polyporussp.S133 in liquid medium. J Hazard Mater 164:911–917.  https://doi.org/10.1016/j.jhazmat.2008.08.081 CrossRefGoogle Scholar
  57. Hallett DJ, Brecher RW (1984) Cycling of polynuclear aromatic hydrocarbons in the Great Lakes ecosystem. In: Niagru JO, Simmons MS (eds) Toxic contaminants in the Great Lakes. Wiley, New York, pp 213–238Google Scholar
  58. Hanazato T (2001) Pesticide effects on freshwater zooplankton: an ecological perspective. Environ Pollut 112:1–10.  https://doi.org/10.1016/S0269-7491(00)00110-X CrossRefGoogle Scholar
  59. Haritash AK, Kaushik CPJ (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15.  https://doi.org/10.1016/j.jhazmat.2009.03.137 CrossRefGoogle Scholar
  60. Haritash AK, Kaushik CP (2016) Degradation of low molecular weight polycyclic aromatic hydrocarbons by microorganisms isolated from contaminated soil. Int J Environ Sci 6:472–482.  https://doi.org/10.6088/ijes.6053 CrossRefGoogle Scholar
  61. Harvey RG (1997) Polycyclic aromatic hydrocarbons, chemistry and carcinogenicity. Cambridge University Press, CambridgeGoogle Scholar
  62. Hassan SSM, Azab WIME, Ali HR, Mansour MSM (2015) Green synthesis and characterization of ZnO nanoparticles for photocatalytic degradation of anthracene. Adv Nat Sci Nanosci Nanotechnol 6:1–11.  https://doi.org/10.1088/2043-6262/6/4/045012 CrossRefGoogle Scholar
  63. Hazardous substances fact sheet, July (2001) New Jersey Department of Health and Senior Services. In: 1–6 http://nj.gov/health/eoh/rtkweb/documents/fs/0208.pdf Google Scholar
  64. Heitkamp MA, Freeman JP, Cerniglia CE (1987) Naphthalene biodegradation in environmental microcosms: estimates of degradation rates and characterization of metabolites. Appl Environ Microbiol 53:129–136Google Scholar
  65. Huang H, Wu K, Khan A, Jiang Y, Ling Z, Liu P, Chen Y, Tao X, Li X (2016) A novel Pseudomonas gessardii strain LZ-E simultaneously degrades naphthalene and reduces hexavalent chromium. Bioresour Technol 207:370–378CrossRefGoogle Scholar
  66. Imma T, Stephen de M, Sheikholeslami Reza M, Jean-Pierre V, Jean B, Chantal C (2004) Aliphatic and aromatic hydrocarbons in coastal Caspian Sea sediments. Mar Pollut Bull 48:44–60.  https://doi.org/10.1016/S0025-326X(03)00255-8 CrossRefGoogle Scholar
  67. International Agency for Research on Cancer (IARC) (1983) Benzo[a]pyrene, polynuclear aromatic compounds. Part 1, Chemical, environmental and experimental data. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans 32:211–224Google Scholar
  68. Irwin RJ (1997a–h) Environmental contaminants encyclopedia a: acenaphthylene; b: fluoranthene; c: benzo (a) anthracene; d: benzo (b) fluoranthene; e: benzo (k) anthracene; f: indeno (1,2,3-c,d) pyrene; g: dibenz (a,h) anthracene [dibenzo (a,h) anthracene]; h: diabenzo (g,h,i) perylene. National park service water resources divisions, Water operations branch 1201 Oakridge drive, Suite 250 Fort Collins, Colorado 80525Google Scholar
  69. Jassal V, Shanker U, Shankar S (2015a) Synthesis characterization and applications of nano-structured metal hexacyanoferrates: a review. J Environ Anal Chem 2:1000128–1000141.  https://doi.org/10.4172/2380-2391.1000128 CrossRefGoogle Scholar
  70. Jassal V, Shanker U, Kaith BS, Shankar S (2015b) Green synthesis of potassium zinc hexacyanoferrate nanocubes and their potential application in photocatalytic degradation of organic dyes. RSC Adv 5:26141–26149.  https://doi.org/10.1039/C5RA03266K CrossRefGoogle Scholar
  71. Jassal V, Shanker U, Kaith BS (2016a) Aegle marmelos mediated green synthesis of different nanostructured metal hexacyanoferrates: activity against photodegradation of harmful organic dyes. Scientifica 2016:1–13.  https://doi.org/10.1155/2016/2715026 CrossRefGoogle Scholar
  72. Jassal V, Shanker U, Gahlot U (2016b) Green synthesis of some iron oxide nanoparticles and their interaction with 2-amino, 3-amino and 4-aminopyridines. Mater Today Proc 3:1874–1882.  https://doi.org/10.1016/j.matpr.2016.04.087 CrossRefGoogle Scholar
  73. Jassal V, Shanker U, Gahlot S, Kaith BS, Kamaluddin IMA, Samuel P (2016c) Sapindus mukorossi mediated green synthesis of some manganese oxide nanoparticles interaction with aromatic amines. Appl Phys A Mater Sci Process 122:271–282.  https://doi.org/10.1007/s00339-016-9777-4 CrossRefGoogle Scholar
  74. Jia H, Zhao J, Fan X, Dilimulati K, Wang C (2012) Photodegradation of phenanthrene on cation-modified clays under visible light. Appl Catal B 123–124:43–51.  https://doi.org/10.1016/j.apcatb.2012.04.017 CrossRefGoogle Scholar
  75. Juhasz L, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocar-bons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad 45:57–88.  https://doi.org/10.1016/S0964-8305(00)00052-4 CrossRefGoogle Scholar
  76. Juhasz AL, Britz ML, Stanley GA (1997) Degradation of fluoranthene, pyrene, benz[a]anthracene and dbenz[a,h]anthracene by Burkholderiacepacia. J Appl Microbiol 83:189–198CrossRefGoogle Scholar
  77. Juhasz AL et al (2000) Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003. Lett Appl Microbiol 30:396–401CrossRefGoogle Scholar
  78. Karam FF, Hussein FH, Baqir SJ, Halbus AF, Dillert R, Bahnemann D (2014) Photocatalytic degradation of anthracene in closed system reactor. Int J Photoenergy 2014:1–6.  https://doi.org/10.1155/2014/503825 CrossRefGoogle Scholar
  79. Kasiotis KM, Emmanouil C (2015) Advanced PAH pollution monitoring by bivalves. Environ Chem Lett 13:395.  https://doi.org/10.1007/s10311-015-0525-3 CrossRefGoogle Scholar
  80. Kaushik CP, Haritash AK (2006) Polycyclic aromatic hydrocarbons (PAHs) and environmental health. Our Earth 3:1–7.  https://doi.org/10.1016/j.jhazmat.2009.03.137 CrossRefGoogle Scholar
  81. Keng PS, Lee SL, Ha ST et al (2014) Removal of hazardous heavy metals from aqueous environment by low-cost adsorption materials. Environ Chem Lett 12:15.  https://doi.org/10.1007/s10311-013-0427-1 CrossRefGoogle Scholar
  82. Kou J, Zhang H, Yuan Y, Li Z, Wang Y, Yu T, Zou Z (2008) Efficient photodegradation of phenanthrene under visible light irradiation via photosensitized electron transfer. J Phys Chem C 112:4291–4296.  https://doi.org/10.1021/jp7111022 CrossRefGoogle Scholar
  83. Latimer J, Zheng J (2003) The sources, transport, and fate of PAH in the marine environment. In: Douben PET (ed) PAHs: an ecotoxicological perspective. Wiley, New YorkGoogle Scholar
  84. Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water treatment. Chem Rev 93:671–698.  https://doi.org/10.1021/cr00018a003 CrossRefGoogle Scholar
  85. Lellala K, Namratha K, Byrappa K (2016) Microwave assisted synthesis and characterization of nanostructure zinc oxide-graphene oxide and photo degradation of brilliant blue. Mater Today Proc 3:74–83CrossRefGoogle Scholar
  86. Li CS, Ro YS (2000) Indoor characteristics of polycyclic aromatic hydrocarbons in the urban atmosphere of Taipei. Atmos Environ 34:611–620.  https://doi.org/10.1016/S1352-2310(99)00171-5 CrossRefGoogle Scholar
  87. Liao W, Ma Y, Chen A, Yang Y (2015) Preparation of fatty acids coated Fe3O4 nanoparticles for adsorption and determination of benzo(a)pyrene in environmental water samples. Chem Eng J 271:232–239.  https://doi.org/10.1016/j.cej.2015.03.010 CrossRefGoogle Scholar
  88. Lijinsky W (1991) The formation and occurrence of polynuclear aromatic hydrocarbons associated with food. Mutat Res 259:251–262.  https://doi.org/10.1016/0165-1218(91)90121-2 CrossRefGoogle Scholar
  89. Lily MK, Bahuguna A, Bhatt KK, Dangwal K (2013) Degradation of Anthracene by a novel strain Brachybacterium paraconglomeratum BMIT637C (MTCC 9445) Int. J Environ Sci 3:1242–1252Google Scholar
  90. Liu SQ (2012) Magnetic semiconductor nano-photocatalysts for the degradation of organic pollutants. Environ Chem Lett 10:209.  https://doi.org/10.1007/s10311-011-0348-9 CrossRefGoogle Scholar
  91. Liu D, Wu Z, Tian F, Ye BC, Tong Y (2016) Synthesis of N and La co-doped TiO2/AC photocatalyst by microwave irradiation for the photocatalytic degradation of naphthalene. J Alloys Compd 676:489–498.  https://doi.org/10.1016/j.jallcom.2016.03.124 CrossRefGoogle Scholar
  92. Lu H, Zhu L (2007) Pollution patterns of polycyclic aromatic hydrocarbons in tobacco smoke. J Hazard Mater 139:193–198.  https://doi.org/10.1016/j.jhazmat.2006.06.011 CrossRefGoogle Scholar
  93. Lung SC, Kao MC, Hu SC (2003) Contribution of incense burning to indoor PM10 and particle-bound polycyclic aromatic hydrocarbons under two ventilation conditions. Indoor Air 13:194–199.  https://doi.org/10.1034/j.1600-0668.2003.00197.x CrossRefGoogle Scholar
  94. Luo F, Yang D, Chen Z, Megharaj M, Naidu R (2016) One-step green synthesis of bimetallic Fe/Pd nanoparticles used to degrade orange II. J Hazard Mater 303:145–153CrossRefGoogle Scholar
  95. Maliszewska-Kordybach B (1999) Sources, concentrations, fate and effects of polycyclic aromatic hydrocarbons (PAHs) in the environment. Part A: PAHs in air. Pol J Environ Stud 8:131–136Google Scholar
  96. Mallakin A, Dixon DG, Greenberg BM (2000) Pathway of anthracene modification under simulated solar radiation. Chemosphere 40:1435–1441.  https://doi.org/10.1016/S0045-6535(99)00331-8 CrossRefGoogle Scholar
  97. Manoli E, Samara C (1999) Polycyclic aromatic hydrocarbons in natural waters: sources, occurrence and analysis. Trends Anal Chem 18:417–428.  https://doi.org/10.1016/S0165-9936(99)00111-9 CrossRefGoogle Scholar
  98. Meador JP, Stein JE, Reichert WL (1995) Bioaccumulation of polyaromatic hydrocarbon by marine organisms. Rev Environ Contam T 79:143–145Google Scholar
  99. Menzie CA, Potocki BB, Santodonato J (1992) Exposure to carcinogenic PAHs in the environment. Environ Sci Technol 26:1278–1284.  https://doi.org/10.1021/es00031a002 CrossRefGoogle Scholar
  100. Moussawi RN, Patra D (2016) Nanoparticle self-assembled grain like curcumin conjugated zno: curcumin conjugation enhances removal of perylene, fluoranthene, and chrysene by ZnO. Sci Rep 6:24565.  https://doi.org/10.1038/srep24565 CrossRefGoogle Scholar
  101. Naf C, Broman D, Brunstrom B (1992) Distribution and metabolism of polycyclic aromatic hydrocarbons (PAHs) injected into eggs of chicken (Gallus domesticus) and common eider duck (Somateriamollissima). Environ Toxicol Chem 11:1653–1660.  https://doi.org/10.1002/etc.5620111114 CrossRefGoogle Scholar
  102. Nam K, Rodriguez W, Kukor JJ (2001) Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction. Chemosphere 45:11–20.  https://doi.org/10.1016/S0045-6535(01)00051-0 CrossRefGoogle Scholar
  103. Nam JJ, Sweetman AJ, Jones KC (2009) Polynuclear aromatic hydrocarbons (PAHs) in global background soils. J Environ Monit 11:45–48.  https://doi.org/10.1039/b813841a CrossRefGoogle Scholar
  104. Nayak A, Sanganal SK, Mudde SK, Karegoudar TB (2011) A catabolic pathway for the degradation of chrysene by Pseudoxanthomonas sp. PNK-04. FEMS Microbiol Lett 320(2):128–134CrossRefGoogle Scholar
  105. Ncibi MC, Mahjoub B, Gourdon R (2007) Effects of aging on the extractability of naphthalene and phenanthrene from Mediterranean soils. J Hazard Mat 146:378–384.  https://doi.org/10.1016/j.jhazmat.2006.12.032 CrossRefGoogle Scholar
  106. Nelkenbaum E, Dror I, Berkowitz B (2007) Reductive hydrogenation of polycyclic aromatic hydrocarbons catalyzed by metalloporphyrins. Chemosphere 68:210–217.  https://doi.org/10.1016/j.chemosphere.2007.01.034 CrossRefGoogle Scholar
  107. Oanh NTK, Reutergardh LB, Dung NT (1999) Emission of polycyclic aromatic hydrocarbons and particulate matter from domestic combustion of selected fuels. Environ Sci Technol 33:2703–2709.  https://doi.org/10.1021/es980853f CrossRefGoogle Scholar
  108. Oncescu T, Stefan MI, Oancea P (2010) Photocatalytic degradation of dichlorvos in aqueous TiO2 suspensions. Environ Sci Pollut Res 17:1158–1166.  https://doi.org/10.1007/s11356-009-0292-4 CrossRefGoogle Scholar
  109. Patel V, Jain S, Madamwar D (2012a) Naphthalene degradation by bacterial consortium (DV-AL) developed from Alang-Sosiya ship breaking yard, Gujarat, India. Bioresour Technol 107:122–130CrossRefGoogle Scholar
  110. Patel V, Cheturvedula S, Madamwar D (2012b) Phenanthrene degradation by Pseudoxanthomonas sp. DMVP2 isolated from hydrocarbon contaminated sediment of Amlakhadi canal, Gujarat. India J Hazard Mat 201–202:43–51CrossRefGoogle Scholar
  111. Pathak H, Kantharia D, Malpani A, Madamwar D (2009) Naphthalene degradation by Pseudomonas sp. HOB1: in vitro studies and assessment of naphthalene degradation efficiency in simulated microcosms. J Hazard Mat 166:1466–1473CrossRefGoogle Scholar
  112. Patnaik P (1999) A comprehensive guide to the properties of hazardous chemical substances, 2nd edn. Wiley, New YorkGoogle Scholar
  113. Prak DJ, Pritchard PH (2002) Solubilization of polycyclic aromatic hydrocarbons mixtures in micellular non-ionic surfactant solution. Water Res 36:3463–3472.  https://doi.org/10.1016/S0043-1354(02)00070-2 CrossRefGoogle Scholar
  114. Prakash A, Sharma S, Ahmad N, Ghosh A, Sinha P (2011) Synthesis of Agnpsbybacilus cereus bacteria and their antimicrobial potential. J Biomater Nanobiotechnol 2:156–162.  https://doi.org/10.4236/jbnb.2011.22020 CrossRefGoogle Scholar
  115. Puglisi E, Cappa F, Fragoulis G, Trevisan M, Re AAMD (2007) Bioavailability and degradation of phenanthrene in compost amended soils. Chemosphere 67:548–556.  https://doi.org/10.1016/j.chemosphere.2006.09.058 CrossRefGoogle Scholar
  116. Ramadahl T, Alfheim I, Rustad S, Olsen T (1982) Chemical and biological characterisation of emissions from small residential stoves burning wood and charcoal. Chemosphere 11:601–611.  https://doi.org/10.1016/0045-6535(82)90205-3 CrossRefGoogle Scholar
  117. Ramsay MA, Swannell RPJ, Shipton WA, Duke NC, Hill RT (2000) Effect of bioremediation community inoiled mangrove sediments. Mar Pollut Bull 20:413–419.  https://doi.org/10.1016/S0025-326X(00)00137-5 CrossRefGoogle Scholar
  118. Rani M(2012) Studies on decay profiles of quinalphos and thiram pesticides. Ph.D thesis, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India, Chapter 1, 5Google Scholar
  119. Rani M, Shanker U (2017a) Degradation of traditional and new emerging pesticides in water by nanomaterials: recent trends and future recommendations. Int J Environ Sci Technol.  https://doi.org/10.1007/s13762-017-1512-y
  120. Rani M, Shanker U (2017b) Removal of carcinogenic aromatic amines by metal hexacyanoferrates nanocubes synthesized via green process. J Environ Chem Engg 5:5298–53112017.  https://doi.org/10.1016/j.jece.2017.10.028 CrossRefGoogle Scholar
  121. Rani M, Shanker U, Chaurasia A (2017a) Catalytic potential of laccase immobilized on transition metal oxides nanomaterials: degradation of alizarin red S dye. J Environ Chem Engg 5:2730.  https://doi.org/10.1016/j.jece.2017.05.026 CrossRefGoogle Scholar
  122. Rani M, Shanker U, Jassal V (2017b) Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: a review. J Environ Manag 190:208–222.  https://doi.org/10.1016/j.jenvman.2016.12.068 CrossRefGoogle Scholar
  123. Reddy SM, Shaik B, Kumar VGS, Joshi HV, Ghosh PK (2003) Quantification and classification of ship scrapping waste at Alang-Sosiya, India. Mar Pollut Bull 46:1609–1614.  https://doi.org/10.1016/S0025-326X(03)00329-1 CrossRefGoogle Scholar
  124. Reddy MS, Basha S, Joshi HV, Ramachandraiah G (2005) Seasonal distribution and contamination levels of total PHCs, PAHs and heavy metals in coastal waters of the Alang-Sosiya ship scrapping yard, Gulf of Cambay, India. Chemosphere 61:1587–1593.  https://doi.org/10.1016/j.chemosphere.2005.04.093 CrossRefGoogle Scholar
  125. Rehmann K, Noll HP, Steinberg CE, Kettrup AA (1998) Pyrene degradation by Mycobacterium sp. strain KR2. Chemosphere 36(14):2977–2992.  https://doi.org/10.1016/S0045-6535(97)10240-5 CrossRefGoogle Scholar
  126. Rick J, Alan L (2010) Obama, in Gulf, pledges to push on stopping leak. USA Today. Associated Press. Retrieved 3 March 2013
  127. Rybak J, Olejniczak T (2014) Accumulation of polycyclic aromatic hydrocarbons (PAHs) on the spider webs in the vicinity of road traffic emissions. Environ Sci Pollut Res Int 21(3):2313–2324.  https://doi.org/10.1007/s11356-013-2092-0 CrossRefGoogle Scholar
  128. Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248.  https://doi.org/10.1016/S0167-7799(02)01943-1 CrossRefGoogle Scholar
  129. Sanglard D, Leisola MSA, Fiechter A (1986) Role of extracellular liginases in biodegradation of benzo[a]pyrene by Phanerochaetechrysoporium. Enzym Microb Technol 8:209–212CrossRefGoogle Scholar
  130. Sannino F, Pirozzi D, Vitiello G, D’errico G, Aronne A, Fanelli E, Pernice P (2014) Oxidative degradation of phenanthrene in the absence of light irradiatiion by hybrid ZrO2-acetylacetonate gel-derived catalyst. Appl Catal B 156–157:101–107.  https://doi.org/10.1016/j.apcatb.2014.03.006 CrossRefGoogle Scholar
  131. Sathish M, Viswanathan B, Viswanath RP (2007) Characterization and photocatalytic activity of N-doped TiO2 prepared by thermal decomposition of Ti–melamine complex. Appl Catal B Environ 74:307–312.  https://doi.org/10.1016/j.apcatb.2007.03.003 CrossRefGoogle Scholar
  132. Schneider J, Grosser R, Jayasimhulu K, Xue W, Warshawsky D (1996) Degradation of pyrene, benzo[a]anthrancene, and benzo[a]pyrene by mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Appl Environ Microbiol 13:13–19Google Scholar
  133. Shahwan T, Abu Sirriah S, Nairat M et al (2011) Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172:258–266.  https://doi.org/10.1016/j.cej.2011.05.103 CrossRefGoogle Scholar
  134. Shanker U, Jassal V, Rani M, Kaith BS (2016a) Towards green synthesis of nanoparticles: from bio-assisted sources to benign solvents. A review. Int J Environ Anal Chem 96:801–835.  https://doi.org/10.1080/03067319.2016.1209663 CrossRefGoogle Scholar
  135. Shanker U, Jassal V, Rani M (2016b) Catalytic removal of organic colorants from water using some transition metal oxide nanoparticles synthesized under sunlight. RSC Adv 6:94989–94999.  https://doi.org/10.1039/C6RA17555D CrossRefGoogle Scholar
  136. Shanker U, Rani M, Jassal V (2017a) Degradation of hazardous organic dyes in water by nanomaterials. Environ Chem Lett 15:1–20.  https://doi.org/10.1007/s10311-017-0650-2 CrossRefGoogle Scholar
  137. Shanker U, Jassal V, Rani M (2017b) Green synthesis of iron hexacyanoferrate nanoparticles: potential candidate for the degradation of toxic PAHs. J Environ Chem Engg 5:4108–4120.  https://doi.org/10.1016/j.jece.2017.07.042 CrossRefGoogle Scholar
  138. Shanker U, Jassal V, Rani M (2017c) Degradation of toxic PAHs in water and soil using potassium zinc hexacyanoferrate nanocubes. J Environ Manag 204:337–348.  https://doi.org/10.1016/j.jenvman.2017.09.015 CrossRefGoogle Scholar
  139. Sharma YC, Srivastava V, Singh VK, Kaul SN, Weng CH (2009) Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environ Technol 30:583–609.  https://doi.org/10.1080/09593330902838080 CrossRefGoogle Scholar
  140. Shukla AK, Iravani S (2017) Metallic nanoparticles: green synthesis and spectroscopic characterization. Environ Chem Lett 15:223.  https://doi.org/10.1007/s10311-017-0618-2 CrossRefGoogle Scholar
  141. Soclo HH, Garriguesa PH, Ewald M (2000) Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Mar Pollut Bull 40:387–396.  https://doi.org/10.1016/S0025-326X(99)00200-3 CrossRefGoogle Scholar
  142. Stronkhorst J, Ysebaert TJ, Smedes F, Meininger PL, Dirksen S (1993) Contaminants in eggs of some waterbird species from Scheldt Estuary, SW Netherlands. Mar Pollut Bull 26:572–578CrossRefGoogle Scholar
  143. Suzanne G, Terry MA (2012) BP suspended from new US federal contracts over deepwater disaster. The Guardian, LondonGoogle Scholar
  144. Swaathy S, Kavitha V, Pravin AS, Mandal AB, Gnanamani A (2014) Microbial surfactant mediated degradation of anthracene in aqueous phase by marine Bacillus licheniformis MTCC 5514. Biotechnol Rep (Amst) 4:161–170CrossRefGoogle Scholar
  145. Tam NFY, Guo CL, Yau WY, Wong YS (2002) Preliminary study on biodegradation of phenanthrene by bacteria isolated from mangrove sediments in Hong Kong. Mar Pollut Bull 45:316–324.  https://doi.org/10.1016/S0025-326X(02)00108-X CrossRefGoogle Scholar
  146. The MAK-Collection Part I (2012) Occupational Toxicants, Deutsche Forschungsgemeinschaft@ 2012. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, p 27Google Scholar
  147. Tonne CC, Whyatt RM, Camann DE, Perera FP, Kinney PL (2004) Predictors of personal polycyclic aromatic hydrocarbon exposures among pregnant minority women in New York City. Environ Health Perspect 112:754–759.  https://doi.org/10.1289/ehp.5955 CrossRefGoogle Scholar
  148. Tremblay L, Kohl SD, Rice JA, Gagne JP (2005) Effects of temperature, salinity, and dissolved humic substances on the sorption of polycyclic aromatic hydrocarbons to estuarine particles. Mar Chem 96:21–34.  https://doi.org/10.1016/j.marchem.2004.10.004 CrossRefGoogle Scholar
  149. Ukiwe LN, Egereonu UU, Njoku PC, Nwoko CIA (2013) Combined chemical and water hyacinth (Eichhorniacrassipes) treatment of PAHs contaminated soil. IJSER 4:1–12Google Scholar
  150. Vanaja M, Paulkumar K, Baburaja M, Rajeshkumar S, Gnanajobitha G, Malarkodi C, Sivakavinesan M, Annadurai G (2014) Degradation of methylene blue using biologically synthesized silver nanoparticles. Bioinorg Chem Appl 2014:1–8CrossRefGoogle Scholar
  151. Villanneau EJ, Saby NPA, Orton TG et al (2013) First evidence of large-scale PAH trends in French soils. Environ Chem Lett 11:99.  https://doi.org/10.1007/s10311-013-0401-y CrossRefGoogle Scholar
  152. Wagoner D (1976) Compilation of ambient trace substances. Draft of report prepared by research triangle institute under contract no. 68-02-1325 for US Environmental Protection Agency. Available from W.G. Tucker, Project officer, IERL-EPA, Project Triangle Park, N.CGoogle Scholar
  153. Walter U, Beyer M, Klein J, Rehm HJ (1991) Degradation of pyrene by Rhodococcus sp. UW1. Appl Microbiol Biotechnol 34:671–676CrossRefGoogle Scholar
  154. Wammer KH, Peters CA (2005) Polycyclic aromatic hydrocarbon biodegradation rates: a structure based study. Environ Sci Technol 39:2571–2578CrossRefGoogle Scholar
  155. Wang C, Yediler A, Peng A, Kettrup A (1995) Photodegradation of phenanthrene by N-doped TiO2 photocatalyst. Chemosphere 30:501–510.  https://doi.org/10.1016/0045-6535(94)00413-O CrossRefGoogle Scholar
  156. Wattiau P, Bastiaens L, Herwijnen RV, Daal L, Parsonsc JR, Renard ME, Springael D, Cornelis GR (2001) Fluorene degradation by Sphingomonas sp. LB126 proceeds through protocatechuic acid: a genetic analysis. Res Microbiol 152:861–872.  https://doi.org/10.1016/S0923-2508(01)01269-4 CrossRefGoogle Scholar
  157. Wen S, Zhao J, Sheng G, Fu J, Peng PA (2002) Photocatalytic reactions of phenanthrene at TiO2/water interfaces. Chemosphere 46:871–877.  https://doi.org/10.1016/S0045-6535(01)00149-7 CrossRefGoogle Scholar
  158. WHO (1998) Environmental health criteria 202: selected non-heterocyclic polycyclic aromatic hydrocarbons. World Health Organization, Geneva, p 883Google Scholar
  159. Wolter M, Zadrazil F, Martens R, Bahadir M (1997) Degradation of eight highly condensed polycyclic aromatic hydrocarbons by Pleurotus sp. Florida in solid wheat straw substrate. Appl Microbiol Biotechnol 48:398–404CrossRefGoogle Scholar
  160. Wright DA, Welbourn P (2002) Environmental toxicology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  161. Xia S, Zhang L, Zhou X, Shao M, Pan G, Ni Z (2015) Fabrication of highly dispersed Ti/ZnO–Cr2O3 composite as highly efficient photocatalyst for naphthalene degradation. Appl Catal B 176–177:266–277.  https://doi.org/10.1016/j.apcatb.2015.04.008 CrossRefGoogle Scholar
  162. Xiao J, Du J (2016) A multifunctional statistical copolymer vesicle for water remediation. Polym Chem 7:4647–4653.  https://doi.org/10.1039/C6PY00763E CrossRefGoogle Scholar
  163. Xue D, Warshawski D (2005) Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol 206:73–93.  https://doi.org/10.1016/j.taap.2004.11.006 CrossRefGoogle Scholar
  164. Xue X, Cheng R, Shi L, Ma Z, Zheng X (2017) Nanomaterials for water pollution monitoring and remediation. Environ Chem Lett 15:23.  https://doi.org/10.1007/s10311-016-0595-x CrossRefGoogle Scholar
  165. Yamada M, Takada H, Toyoda K, Yoshida A, Shibata A, Nomura H, Wada M, Nishimura M, Okamoto K, Ohwada K (2003) Study on the fate of petroleum-derived polycyclic aromatic hydrocarbons (PAHs) and the effect of chemical dispersant using an enclosed ecosystem, mesocosm. Mar Pollut Bull 47:105–113.  https://doi.org/10.1016/S0025-326X(03)00102-4 CrossRefGoogle Scholar
  166. Yang HH, Lee WJ, Chen SJ, Lai SO (1998) PAH emission from various industrial stacks. J Hazard Mater 60:159–174.  https://doi.org/10.1016/S0304-3894(98)00089-2 CrossRefGoogle Scholar
  167. Yuanfu P, Otake M, Vacha M, Sato H (2007) Synthesis and characterization of a novel electroluminescent polymer based on phenoxazine and fluorene derivatives. React Funct Polym 67:1211–1217.  https://doi.org/10.1016/j.reactfunctpolym.2007.07.011 CrossRefGoogle Scholar
  168. Yusuf N, Timares L, Seibert MD, Xu H, Elmets CA (2007) Acquired and innate immunity to polyaromatic hydrocarbons. Toxicol Appl Pharmacol 224:308–312.  https://doi.org/10.1016/j.taap.2006.12.009 CrossRefGoogle Scholar
  169. Zhang J, Noshaka Y (2014) Mechanism of the OH radical generation in photocatalysis with TiO2 of different crystalline types. J Phys Chem C 118(20):10824–10832.  https://doi.org/10.1021/jp501214m CrossRefGoogle Scholar
  170. Zhang Y, Tao X (2009) Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos Environ 43:812–819.  https://doi.org/10.1016/j.atmosenv.2008.10.050 CrossRefGoogle Scholar
  171. Zhang LH, Li PJ, Gong ZQ, Oni AA (2006) Photochemical behaviour of benzo [a] pyrene on soil surface under UV light irradiation. J Environ Sci 18:1226–1232.  https://doi.org/10.1016/S1001-0742(06)60067-3 CrossRefGoogle Scholar
  172. Zhang Y, Wong JWC, Liu P, Yuan M (2011) Heterogeneous photocatalytic degradation of phenanthrene in surfactant solution containing TiO2 particles. J Hazard Mater 191:136–114.  https://doi.org/10.1016/j.jhazmat.2011.04.059 CrossRefGoogle Scholar
  173. Zhao X, Cai Z, Wang T, O’Reilly SE, Liu W, Zhao D (2016) A new type of cobalt-deposited titanate nanotubes for enhanced photocatalytic degradation of phenanthrene. Appl Catal B 187:134–143.  https://doi.org/10.1016/j.apcatb.2016.01.010 CrossRefGoogle Scholar
  174. Zhao S, Jia H Nulaji G, Gao H, Wang F, Wang C (2017) Photolysis of polycyclic aromatic hydrocarbons (PAHs) on Fe3+−montmorillonite surface under visible light: degradation kinetics, mechanism, and toxicity assessments. Chemosphere 84:1346–1354.  https://doi.org/10.1016/j.chemosphere.2017.06.106 CrossRefGoogle Scholar
  175. Zheng XJ, Blais JF, Mercier G, Bergeron M, Drogui P (2007) PAH removal from spiked municipal wastewater sewage sludge using biological, chemical and electrochemical treatments. Chemosphere 68:1143–1152.  https://doi.org/10.1016/j.chemosphere.2007.01.052 CrossRefGoogle Scholar
  176. Zhu L, Lu H, Chen S, Amagai T (2009) Pollution level phase distribution and source analysis of polycyclic aromatic hydrocarbons in residential air in Hangzhou. China J Hazard Mater 162:1165–1170.  https://doi.org/10.1016/j.jhazmat.2008.05.150 CrossRefGoogle Scholar
  177. Zhu Y, Fan L, Yang B, Du J (2014) Multifunctional Homopolymer vesicles for facile immobilization of gold nanoparticles and effective water remediation. ACS Nano 8:5022–5031.  https://doi.org/10.1021/nn5010974 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Manviri Rani
    • 1
  • Uma Shanker
    • 1
  1. 1.Department of ChemistryDr. B. R. Ambedkar National Institute of TechnologyJalandharIndia

Personalised recommendations