Some Elements of Potential Theory

  • Joachim Gwinner
  • Ernst Peter Stephan
Part of the Springer Series in Computational Mathematics book series (SSCM, volume 52)


In this chapter we collect well-known concepts and results of classical potential theory that are necessary for the understanding of BEM.


  1. 43.
    C.A. Berenstein, R. Gay, Complex Variables. Graduate Texts in Mathematics, vol. 125 (Springer, New York, 1991)CrossRefGoogle Scholar
  2. 114.
    M. Costabel, Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19, 613–626 (1988)MathSciNetCrossRefGoogle Scholar
  3. 116.
    M. Costabel, Randelemente (Vorlesungsmanuskript, TU Darmstadt, 1989)Google Scholar
  4. 118.
    M. Costabel, Some Historical Remarks on the Positivity of Boundary Integral Operators. Boundary Element Analysis. Lect. Notes Appl. Comput. Mech., vol. 29 (Springer, Berlin, 2007), pp. 1–27Google Scholar
  5. 127.
    M. Costabel, E.P. Stephan, The normal derivative of the double layer potential on polygons and Galerkin approximation. Appl. Anal. 16, 205–228 (1983)MathSciNetCrossRefGoogle Scholar
  6. 185.
    D. Gaier, Integralgleichungen erster Art und konforme Abbildung. Math. Z. 147, 113–129 (1976)MathSciNetCrossRefGoogle Scholar
  7. 203.
    M.O. González, Classical Complex Analysis. Monographs and Textbooks in Pure and Applied Mathematics, vol. 151 (Marcel Dekker, New York, 1992)Google Scholar
  8. 206.
    N.M. Günter, Potential Theory and Its Applications to Basic Problems of Mathematical Physics (Frederick Ungar Publishing, New York, 1967)zbMATHGoogle Scholar
  9. 225.
    W. Hackbusch, Integral Equations. International Series of Numerical Mathematics, vol. 120 (Birkhäuser Verlag, Basel, 1995)CrossRefGoogle Scholar
  10. 245.
    E. Hille, Analytic Function Theory, Vol. II (Ginn and Co., Boston-New York-Toronto, 1962)zbMATHGoogle Scholar
  11. 259.
    G.C. Hsiao, W.L. Wendland, Boundary Integral Equations. Applied Mathematical Sciences, vol. 164 (Springer, Berlin, 2008)CrossRefGoogle Scholar
  12. 276.
    R. Kress, Linear Integral Equations, 3rd edn. Applied Mathematical Sciences, vol. 82 (Springer, New York, 2014)Google Scholar
  13. 307.
    M. Mitrea, M. Wright, Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque 344, viii+241 (2012)Google Scholar
  14. 322.
    J.C. Nédélec, Integral equations with nonintegrable kernels. Integr. Equ. Oper. Theory 5, 562–572 (1982)MathSciNetCrossRefGoogle Scholar
  15. 327.
    J. Nečas, Direct Methods in the Theory of Elliptic Equations. Springer Monographs in Mathematics (Springer, Heidelberg, 2012). Translated from the 1967 French original by G. Tronel and A. Kufner, and a contribution by Ch. G. SimaderCrossRefGoogle Scholar
  16. 380.
    I.H. Sloan, A. Spence, The Galerkin method for integral equations of the first kind with logarithmic kernel: theory. IMA J. Numer. Anal. 8, 105–122 (1988)MathSciNetCrossRefGoogle Scholar
  17. 394.
    O. Steinbach, W.L. Wendland, On C. Neumann’s method for second-order elliptic systems in domains with non-smooth boundaries. J. Math. Anal. Appl. 262, 733–748 (2001)Google Scholar
  18. 405.
    E.P. Stephan, M. Suri, The h-p version of the boundary element method on polygonal domains with quasiuniform meshes. RAIRO Modél. Math. Anal. Numér. 25, 783–807 (1991)MathSciNetCrossRefGoogle Scholar
  19. 421.
    G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59, 572–611 (1984)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Joachim Gwinner
    • 1
  • Ernst Peter Stephan
    • 2
  1. 1.Fakultät für Luft- und RaumfahrttechnikUniversität der Bundeswehr MünchenNeubiberg/MünchenGermany
  2. 2.Institut für Angewandte MathematikLeibniz Universität HannoverHannoverGermany

Personalised recommendations