Advertisement

FEM-BEM Coupling

  • Joachim Gwinner
  • Ernst Peter Stephan
Chapter
Part of the Springer Series in Computational Mathematics book series (SSCM, volume 52)

Abstract

The BEM is well established for the solution of linear elliptic boundary value problems. Its essential feature is the reduction of the partial differential equation in the domain to an integral equation on the surface. Then, for the numerical treatment, only the surface has to be discretized. This leads to a comparatively small number of unknowns. It is possible to solve problems in unbounded domains. In contrast, the FEM requires a discretization of the domain. However, when dealing with nonlinear problems, the latter method is more versatile. Typical examples for which the coupling of both methods is advantageous are rubber sealings and bearings that are located between construction elements made of steel, concrete, or glass. For these elements, linear elasticity often is a sufficient model, and the BEM is favorable.

References

  1. 1.
    H. Ammari, A. Buffa, J.-C. Nédélec, A justification of eddy currents model for the Maxwell equations. SIAM J. Appl. Math. 60, 1805–1823 (2000)MathSciNetCrossRefGoogle Scholar
  2. 8.
    M. Aurada, M. Feischl, Th. Führer, M. Karkulik, J.M. Melenk, D. Praetorius, Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity. Comput. Mech. 51, 399–419 (2014)MathSciNetCrossRefGoogle Scholar
  3. 9.
    M. Aurada, M. Feischl, Th. Führer, M. Karkulik, J.M. Melenk, D. Praetorius, Local inverse estimates for non-local boundary integral operators. Math. Comput. 86, 2651–2686 (2017)MathSciNetCrossRefGoogle Scholar
  4. 13.
    M. Aurada, M. Feischl, D. Praetorius, Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems. ESAIM Math. Model. Numer. Anal. 46, 1147–1173 (2012)MathSciNetCrossRefGoogle Scholar
  5. 40.
    R. Beck, P. Deuflhard, R. Hiptmair, R.H.W. Hoppe, B. Wohlmuth, Adaptive multilevel methods for edge element discretizations of Maxwell’s equations. Surveys Math. Indust. 8, 271–312 (1999)MathSciNetzbMATHGoogle Scholar
  6. 53.
    A. Bespalov, S. Nicaise, A priori error analysis of the BEM with graded meshes for the electric field integral equation on polyhedral surfaces. Comput. Math. Appl. 71, 1636–1644 (2016)MathSciNetCrossRefGoogle Scholar
  7. 54.
    J. Bielak, R.C. MacCamy, An exterior interface problem in two-dimensional elastodynamics. Quart. Appl. Math. 41, 143–159 (1983/84)MathSciNetCrossRefGoogle Scholar
  8. 57.
    D. Boffi, M. Costabel, M. Dauge, L. Demkowicz, R. Hiptmair, Discrete compactness for the p-version of discrete differential forms. SIAM J. Numer. Anal. 49, 135–158 (2011)MathSciNetCrossRefGoogle Scholar
  9. 58.
    A. Bossavit, The computation of eddy-currents, in dimension 3, by using mixed finite elements and boundary elements in association. Math. Comput. Modell. 15, 33–42 (1991)MathSciNetCrossRefGoogle Scholar
  10. 62.
    J.H. Bramble, R.D. Lazarov, J.E. Pasciak, A least-squares approach based on a discrete minus one inner product for first order systems. Math. Comput. 66, 935–955 (1997)MathSciNetCrossRefGoogle Scholar
  11. 65.
    F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15 (Springer, New York, 1991)Google Scholar
  12. 66.
    U. Brink, E.P. Stephan, Adaptive coupling of boundary elements and mixed finite elements for incompressible elasticity. Numer. Methods Partial Differ. Equ. 17, 79–92 (2001)MathSciNetCrossRefGoogle Scholar
  13. 67.
    A. Buffa, Trace Theorems on Non-smooth Boundaries for Functional Spaces Related to Maxwell Equations: An Overview. Computational Electromagnetics (Kiel, 2001). Lect. Notes Comput. Sci. Eng., vol. 28 (Springer, Berlin, 2003), pp. 23–34Google Scholar
  14. 68.
    A. Buffa, S.H. Christiansen, The electric field integral equation on Lipschitz screens: definitions and numerical approximation. Numer. Math. 94, 229–267 (2003)MathSciNetCrossRefGoogle Scholar
  15. 69.
    A. Buffa, P. Ciarlet, Jr., On traces for functional spaces related to Maxwell’s equations. I. An integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci. 24, 9–30 (2001)zbMATHGoogle Scholar
  16. 70.
    A. Buffa, P. Ciarlet, Jr., On traces for functional spaces related to Maxwell’s equations. II. Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Methods Appl. Sci. 24, 31–48 (2001)zbMATHGoogle Scholar
  17. 71.
    A. Buffa, M. Costabel, D. Sheen, On traces for H(curl, Ω) in Lipschitz domains. J. Math. Anal. Appl. 276, 845–867 (2002)MathSciNetCrossRefGoogle Scholar
  18. 72.
    A. Buffa, R. Hiptmair, Galerkin Boundary Element Methods for Electromagnetic Scattering. Topics in Computational Wave Propagation. Lect. Notes Comput. Sci. Eng., vol. 31 (Springer, Berlin, 2003), pp. 83–124Google Scholar
  19. 80.
    C. Carstensen, S.A. Funken, Coupling of nonconforming finite elements and boundary elements. I. A priori estimates. Computing 62, 229–241 (1999)MathSciNetzbMATHGoogle Scholar
  20. 81.
    C. Carstensen, S.A. Funken, Coupling of mixed finite elements and boundary elements. IMA J. Numer. Anal. 20, 461–480 (2000)MathSciNetCrossRefGoogle Scholar
  21. 83.
    C. Carstensen, S.A. Funken, E.P. Stephan, On the adaptive coupling of FEM and BEM in 2-d-elasticity. Numer. Math. 77, 187–221 (1997)MathSciNetCrossRefGoogle Scholar
  22. 85.
    C. Carstensen, J. Gwinner, FEM and BEM coupling for a nonlinear transmission problem with Signorini contact. SIAM J. Numer. Anal. 34, 1845–1864 (1997)MathSciNetCrossRefGoogle Scholar
  23. 91.
    C. Carstensen, E.P. Stephan, Adaptive coupling of boundary elements and finite elements. RAIRO Modél. Math. Anal. Numér. 29, 779–817 (1995)MathSciNetCrossRefGoogle Scholar
  24. 105.
    P.G. Ciarlet, Basic Error Estimates for Elliptic Problems. Handbook of Numerical Analysis, Vol. II (North-Holland, Amsterdam, 1991), pp. 17–351CrossRefGoogle Scholar
  25. 110.
    Ph. Clément, Approximation by finite element functions using local regularization. RAIRO Analyse Numérique 9, 77–84 (1975)MathSciNetCrossRefGoogle Scholar
  26. 113.
    M. Costabel, Symmetric Methods for the Coupling of Finite Elements and Boundary Elements (Invited Contribution). Boundary Elements IX, Vol. 1 (Stuttgart, 1987) (Comput. Mech., Southampton, 1987), pp. 411–420Google Scholar
  27. 115.
    M. Costabel, A Symmetric Method for the Coupling of Finite Elements and Boundary Elements. The Mathematics of Finite Elements and Applications, VI (Uxbridge, 1987) (Academic Press, London, 1988), pp. 281–288Google Scholar
  28. 120.
    M. Costabel, V.J. Ervin, E.P. Stephan, Symmetric coupling of finite elements and boundary elements for a parabolic-elliptic interface problem. Quart. Appl. Math. 48, 265–279 (1990)MathSciNetCrossRefGoogle Scholar
  29. 121.
    M. Costabel, V.J. Ervin, E.P. Stephan, Experimental convergence rates for various couplings of boundary and finite elements. Math. Comput. Model. 15, 93–102 (1991)MathSciNetCrossRefGoogle Scholar
  30. 123.
    M. Costabel, A. McIntosh, On Bogovskiı̆ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265, 297–320 (2010)MathSciNetCrossRefGoogle Scholar
  31. 129.
    M. Costabel, E.P. Stephan, A direct boundary integral equation method for transmission problems. J. Math. Anal. Appl. 106, 367–413 (1985)MathSciNetCrossRefGoogle Scholar
  32. 132.
    M. Costabel, E.P. Stephan, Coupling of Finite Elements and Boundary Elements for Inhomogeneous Transmission Problems in R 3. The Mathematics of Finite Elements and Applications, VI (Uxbridge, 1987) (Academic Press, London, 1988), pp. 289–296Google Scholar
  33. 133.
    M. Costabel, E.P. Stephan, Coupling of Finite Elements and Boundary Elements for Transmission Problems of Elastic Waves in R 3. Advanced Boundary Element Methods (San Antonio, TX, 1987) (Springer, Berlin, 1988), pp. 117–124CrossRefGoogle Scholar
  34. 136.
    M. Costabel, E.P. Stephan, Coupling of finite and boundary element methods for an elastoplastic interface problem. SIAM J. Numer. Anal. 27, 1212–1226 (1990)MathSciNetCrossRefGoogle Scholar
  35. 176.
    M. Feischl, Th. Führer, G. Mitscha-Eibl, D. Praetorius, E.P. Stephan, Convergence of adaptive BEM and adaptive FEM-BEM coupling for estimators without h-weighting factor. Comput. Methods Appl. Math. 14, 485–508 (2014)MathSciNetCrossRefGoogle Scholar
  36. 181.
    Th. Führer, Zur Kopplung von Finiten Elementen und Randelementen, Ph.D. thesis, TU Wien, 2014Google Scholar
  37. 186.
    G.N. Gatica, G.C. Hsiao, F.-J. Sayas, Relaxing the hypotheses of Bielak-MacCamy’s BEM-FEM coupling. Numer. Math. 120, 465–487 (2012)MathSciNetCrossRefGoogle Scholar
  38. 187.
    G.N. Gatica, N. Heuer, E.P. Stephan, An implicit-explicit residual error estimator for the coupling of dual-mixed finite elements and boundary elements in elastostatics. Math. Methods Appl. Sci. 24, 179–191 (2001)MathSciNetCrossRefGoogle Scholar
  39. 188.
    G.N. Gatica, M. Maischak, E.P. Stephan, Numerical analysis of a transmission problem with Signorini contact using mixed-FEM and BEM. ESAIM Math. Model. Numer. Anal. 45, 779–802 (2011)MathSciNetCrossRefGoogle Scholar
  40. 189.
    H. Gimperlein, M. Maischak, E. Schrohe, E.P. Stephan, Adaptive FE-BE coupling for strongly nonlinear transmission problems with Coulomb friction. Numer. Math. 117, 307–332 (2011)MathSciNetCrossRefGoogle Scholar
  41. 196.
    V. Girault, P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer Series in Computational Mathematics, vol. 5 (Springer, Berlin, 1986). Theory and AlgorithmsCrossRefGoogle Scholar
  42. 228.
    H. Han, A new class of variational formulations for the coupling of finite and boundary element methods. J. Comput. Math. 8, 223–232 (1990)MathSciNetzbMATHGoogle Scholar
  43. 236.
    N. Heuer, M. Maischak, E.P. Stephan, Preconditioned minimum residual iteration for the h-p version of the coupled FEM/BEM with quasi-uniform meshes. Numer. Linear Algebra Appl. 6, 435–456 (1999)MathSciNetCrossRefGoogle Scholar
  44. 237.
    N. Heuer, S. Meddahi, F.-J. Sayas, Symmetric coupling of LDG-FEM and DG-BEM. J. Sci. Comput. 68, 303–325 (2016)MathSciNetCrossRefGoogle Scholar
  45. 246.
    R. Hiptmair, Symmetric coupling for eddy current problems. SIAM J. Numer. Anal. 40, 41–65 (2002)MathSciNetCrossRefGoogle Scholar
  46. 247.
    R. Hiptmair, Coupling of finite elements and boundary elements in electromagnetic scattering. SIAM J. Numer. Anal. 41, 919–944 (2003)MathSciNetCrossRefGoogle Scholar
  47. 248.
    R. Hiptmair, C. Schwab, Natural boundary element methods for the electric field integral equation on polyhedra. SIAM J. Numer. Anal. 40, 66–86 (2002)MathSciNetCrossRefGoogle Scholar
  48. 263.
    C. Johnson, J.C. Nédélec, On the coupling of boundary integral and finite element methods. Math. Comput. 35, 1063–1079 (1980)MathSciNetCrossRefGoogle Scholar
  49. 264.
    M. Karkulik, Zur Konvergenz und Quasioptimalität adaptiver Randelementmethoden, Ph.D. thesis, TU Wien, 2012Google Scholar
  50. 274.
    A. Krebs, M. Maischak, E.P. Stephan, Adaptive FEM-BEM coupling with a Schur complement error indicator. Appl. Numer. Math. 60, 798–808 (2010)MathSciNetCrossRefGoogle Scholar
  51. 281.
    F. Leydecker, hp-version of the boundary element method for electromagnetic problems : error analysis, adaptivity, preconditioners, Ph.D. thesis, Leibniz Universität Hannover, 2006Google Scholar
  52. 282.
    F. Leydecker, M. Maischak, E.P. Stephan, M. Teltscher, Adaptive FE-BE coupling for an electromagnetic problem in \(\mathbb {R}^3\)—a residual error estimator. Math. Methods Appl. Sci. 33, 2162–2186 (2010)Google Scholar
  53. 283.
    F. Leydecker, M. Maischak, E.P. Stephan, M. Teltscher, A p-hierarchical error estimator for a fe-be coupling formulation applied to electromagnetic scattering problems in \(\mathbb {R}^3\). Appl. Anal. 91, 277–293 (2012)Google Scholar
  54. 284.
    J.-L. Lions, E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I. Grundlehren der mathematischen Wissenschaften, vol. 181 (Springer, New York-Heidelberg, 1972). Translated from the French by P. KennethGoogle Scholar
  55. 285.
    R.C. MacCamy, E.P. Stephan, A Simple Layer Potential Method for Three-Dimensional Eddy Current Problems. Ordinary and Partial Differential Equations. Lecture Notes in Math., vol. 1964 (Springer, Berlin, 1982), pp. 477–484CrossRefGoogle Scholar
  56. 288.
    R.C. MacCamy, E.P. Stephan, A skin effect approximation for eddy current problems. Arch. Ration. Mech. Anal. 90, 87–98 (1985)MathSciNetCrossRefGoogle Scholar
  57. 289.
    R.C. MacCamy, M. Suri, A time-dependent interface problem for two-dimensional eddy currents. Quart. Appl. Math. 44, 675–690 (1987)MathSciNetCrossRefGoogle Scholar
  58. 292.
    M. Maischak, Fem/bem Methods for Signorini-Type Problems: Error Analysis, Adaptivity, Preconditioners. Habilitationsschrift (Leibniz Universität Hannover, 2004)Google Scholar
  59. 296.
    M. Maischak, E.P. Stephan, A least squares coupling method with finite elements and boundary elements for transmission problems. Comput. Math. Appl. 48, 995–1016 (2004)MathSciNetCrossRefGoogle Scholar
  60. 298.
    M. Maischak, E.P. Stephan, A FEM-BEM coupling method for a nonlinear transmission problem modelling Coulomb friction contact. Comput. Methods Appl. Mech. Eng. 194, 453–466 (2005)MathSciNetCrossRefGoogle Scholar
  61. 306.
    S. Meddahi, J. Valdés, O. Menéndez, P. Pérez, On the coupling of boundary integral and mixed finite element methods. J. Comput. Appl. Math. 69, 113–124 (1996)MathSciNetCrossRefGoogle Scholar
  62. 311.
    P. Mund, E.P. Stephan, Adaptive coupling and fast solution of FEM-BEM equations for parabolic-elliptic interface problems. Math. Methods Appl. Sci. 20, 403–423 (1997)MathSciNetCrossRefGoogle Scholar
  63. 312.
    P. Mund, E.P. Stephan, An adaptive two-level method for the coupling of nonlinear FEM-BEM equations. SIAM J. Numer. Anal. 36, 1001–1021 (1999)MathSciNetCrossRefGoogle Scholar
  64. 321.
    J.C. Nédélec, Mixed finite elements in R 3. Numer. Math. 35, 315–341 (1980)MathSciNetCrossRefGoogle Scholar
  65. 322.
    J.C. Nédélec, Integral equations with nonintegrable kernels. Integr. Equ. Oper. Theory 5, 562–572 (1982)MathSciNetCrossRefGoogle Scholar
  66. 325.
    J.C. Nédélec, Computation of eddy currents on a surface in R 3 by finite element methods. SIAM J. Numer. Anal. 15, 580–594 (1978)MathSciNetCrossRefGoogle Scholar
  67. 330.
    G. Of, O. Steinbach, Is the one-equation coupling of finite and boundary element methods always stable?. ZAMM Z. Angew. Math. Mech. 93, 476–484 (2013)MathSciNetCrossRefGoogle Scholar
  68. 341.
    R.A. Prato Torres, E.P. Stephan, F. Leydecker, A FE/BE coupling for the 3D time-dependent eddy current problem. Part I: a priori error estimates. Computing 88, 131–154 (2010)zbMATHGoogle Scholar
  69. 342.
    R.A. Prato Torres, E.P. Stephan, F. Leydecker, A FE/BE coupling for the 3D time-dependent eddy current problem. Part II: a posteriori error estimates and adaptive computations. Computing 88, 155–172 (2010)zbMATHGoogle Scholar
  70. 352.
    J.E. Roberts, J.-M. Thomas, Mixed and Hybrid Methods. Handbook of Numerical Analysis, Vol. II. Handb. Numer. Anal., II (North-Holland, Amsterdam, 1991), pp. 523–639Google Scholar
  71. 360.
    F.-J. Sayas, The validity of Johnson-Nédélec’s BEM-FEM coupling on polygonal interfaces. SIAM J. Numer. Anal. 47, 3451–3463 (2009)MathSciNetCrossRefGoogle Scholar
  72. 392.
    O. Steinbach, A note on the stable one-equation coupling of finite and boundary elements. SIAM J. Numer. Anal. 49, 1521–1531 (2011)MathSciNetCrossRefGoogle Scholar
  73. 399.
    E.P. Stephan, Coupling of finite elements and boundary elements for some nonlinear interface problems. Comput. Methods Appl. Mech. Eng. 101, 61–72 (1992)MathSciNetCrossRefGoogle Scholar
  74. 401.
    E.P. Stephan, M. Maischak, A posteriori error estimates for fem-bem couplings of three-dimensional electromagnetic problems. Comput. Methods Appl. Mech. Eng. 194, 441–452 (2005)MathSciNetCrossRefGoogle Scholar
  75. 436.
    H. Yserentant, On the multilevel splitting of finite element spaces. Numer. Math. 49, 379–412 (1986)MathSciNetCrossRefGoogle Scholar
  76. 437.
    E. Zeidler, Nonlinear Functional Analysis and Its Applications. IV (Springer, New York, 1988)CrossRefGoogle Scholar
  77. 439.
    O.C. Zienkiewicz, D.W. Kelly, P. Bettess, Marriage à la Mode—The Best of Both Worlds (Finite Elements and Boundary Integrals). Energy Methods in Finite Element Analysis (Wiley, Chichester, 1979), pp. 81–107Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Joachim Gwinner
    • 1
  • Ernst Peter Stephan
    • 2
  1. 1.Fakultät für Luft- und RaumfahrttechnikUniversität der Bundeswehr MünchenNeubiberg/MünchenGermany
  2. 2.Institut für Angewandte MathematikLeibniz Universität HannoverHannoverGermany

Personalised recommendations