Advertisement

Quince (Cydonia oblonga Mill.) Breeding

  • Salih Kafkas
  • Burhanettin Imrak
  • Nesibe Ebru Kafkas
  • Abdulkadir Sarıer
  • Ali Kuden
Chapter

Abstract

Quince, Cydonia oblonga Mill. is one of the most important pome fruit species in the Rosaceae family. The genus Cydonia is monospecific and includes only a single species. Quince is grown for both fruit production and rootstock, and pear scion cultivars. It is cultivated for fruit production all over the world but most of the production is around its origin. Its fruits are used both for fresh consumption and for industry such as jam, jelly, marmalade, canning etc. Quince rootstocks such as Quince A and Quince C provide dwarfing to pear scion cultivars. The cultivar breeding by intraspecific crossing is very limited, and mostly all the cultivars in the production are selections from either nature or backyards. There are a few quince germplasm resources in the world characterized phenotypically and by different molecular marker systems. There are also studies aiming to produce quince x apple and pear x quince intergeneric crosses for rootstock. Quince is highly sensitive to fire blight ( Erwinia amylovora Burril) which is the most important problem in fruit and rootstock production. Although genomic resources are very limited for Cydonia, apple and pear genomic resources in genebanks can be used for genetic and molecular studies in quince. It is necessary to have a large germplasm collection from diverse countries and with segregating populations for economically-important characters to start genetic studies in quince. This will allow use of molecular tools in the future breeding programs in quince.

Keywords

Cydonia Cultivar breeding Quince germplasm Rootstock breeding Quince diversity 

Notes

Acknowledgements

We thank to Dr. Adnan Dogan and Mehmet Emin Akçay from Atatürk Horticultural Central Research Institute in Yalova provinces of Turkey for providing several photos.

References

  1. Abdollahi H (2013) One decade challenges for selection and breeding of superior pear (Pyrus communis) and quince (Cydonia oblonga) cultivars in Iran. In: Proceeding of the 8th Iranian horticultural science congress, Hamadan, Iran, pp 20–27Google Scholar
  2. Adler M (2001) Quince (Cydonia oblonga Mill.) and its growing and economic descriptions. In: Proceedings 9th international conference of horticulture, 3–6 Sept 2001, Lednice, Czech Republic, pp 3–7Google Scholar
  3. Alesiani D, Canini A, D’Abrosca B, DellaGreca M (2010) Antioxidant and antiproliferative activities of phytochemicals from quince (Cydonia vulgaris) peels. Food Chem 118:199–207CrossRefGoogle Scholar
  4. Alvarenga AA, Abrahao E, Pio R et al (2008) Comparison among marmalades produced from different fruit quince species (Cydonia oblonga Miller and Chaenomeles sinensis Koehne) and cultivars. Cienc Agrotecnol 32:302–307CrossRefGoogle Scholar
  5. Amiri ME (2008) The status of genetic resources of deciduous, tropical, and subtropical fruit species in Iran. Acta Hortic 769:159–167CrossRefGoogle Scholar
  6. Anirudh T, Kanwar JS (2008) Micropropagation of wild pear Pyrus pyrifolia (Burm F.) Nakai. 11. Induction of rooting. Hortic Agrobot Cluj 36(2):104–111Google Scholar
  7. Antonelli M (1995) The regenerative ability of quince BA29 in vitro. Hortic Sci 9:3–6Google Scholar
  8. Aygun A, Dumanoglu H (2007) Shoot organogenesis from leaf discs in some quince (Cydonia oblonga Mill.) genotypes. Tarım Bilimleri Dergisi. J Agric Sci 13:54–61Google Scholar
  9. Azad MK, Nasiri J, Abdollahi H (2013) Genetic diversity of selected Iranian quinces using SSRs from apples and pears Biochem. Genetics 51(5–6):426–442Google Scholar
  10. Baker BS, Bhatia SK (1993) Factors effecting adventitious shoot regeneration from leaf explants of quince (Cydonia oblonga). Plant Cell Tissue Org Cult 35:273–277CrossRefGoogle Scholar
  11. Bao L, Chen K, Zhang D, Cao Y (2007) Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple sequence repeat) markers. Genet Res Crop 54:959–971CrossRefGoogle Scholar
  12. Bassil NV, Postman JD, Hummer KE, Mota J (2011) Quince (Cydonia oblonga) genetic relationship determined using microsatellite markers. Acta Hortic 909:75–84CrossRefGoogle Scholar
  13. Bassil NV, Davis TM, Zhang H et al (2015) Development and preliminary evaluation of a 90 K Axiom SNP array for the allo-octoploid cultivated strawberry Fragaria × ananassa. BMC Genomics 16:155CrossRefPubMedPubMedCentralGoogle Scholar
  14. Basu YA, Mir MA, Bhatt KM, Mir BA (2017) In vitro propagation of Cydonia oblonga cv. SKAU-016. Int J Curr Microbiol App Sci 6(9):1865–1873Google Scholar
  15. Bayazit S, Imrak B, Küden A, Kemal GM (2011) RAPD analysis of genetic relatedness among selected quince (Cydonia oblonga Mill.) accessions from different parts of Turkey. Hortic Sci 38:134–141CrossRefGoogle Scholar
  16. Bell RL, Leitao JM (2011) Cydonia. In: Cole C (ed) Wild crop relatives genomic and breeding resources: temperate fruits. Berlin, pp 1–16Google Scholar
  17. Bellini E, Giordani E (2000) Conservation of under-utilized fruit tree species in Europe. Acta Hortic 522:165–173CrossRefGoogle Scholar
  18. Bobev S, Angelov L, Govedarov G, Postman J (2009) Field susceptibility of quince hybrids to fire blight in Bulgaria. Phytopath 99:13Google Scholar
  19. Bucsek MJ, Nyeki J, Szabo Z, Kadar A (1996) Quantitation of mineral elements of different fruit pollen grains. Mikrochim Acta 13:333–338Google Scholar
  20. Campbell CS, Donoghue MJ, Baldwin BG, Wojciechowski MF (1995) Phylogenetic relationships in Maloideae (Rosaceae): evidence from sequences of the internal transcribed spaces of nuclear ribosomal DNA and its congruence with morphology. Am J Bot 82:903–918CrossRefGoogle Scholar
  21. Carvalho M, Silva BM, Silva R et al (2010) First report on Cydonia oblonga Miller anticancer potential: differential antiproliferative effect against human kidney and colon cancer cells. J Agric Food Chem 58:3366–3370CrossRefPubMedGoogle Scholar
  22. Celik M (1982) Bazı Armut Çeşitleri İçin En Uygun S.Ö. Ayva Anacı Seçimi ve Aşı Uyuşmazlığının Biyokimyasal Analiz Yöntemleri İle Belirlenmesi. Dissertation, University of AnkaraGoogle Scholar
  23. Celik M (1988) Ankara Koşullarında Williams, Ankara, Akça ve Şeker Armut Çeşitleri İçin En Uygun S.Ö. Ayva Anaçlarının seçimi Üzerinde Bir Araştırma. University of AnkaraGoogle Scholar
  24. Chartier-Hollis JM (1993) The induction and maintenance of caulogenesis from undifferentiated callus of quince (Cydonıa oblonga). Acta Hortic 336:321–326CrossRefGoogle Scholar
  25. Chen H, Song Y, Li LT et al (2015) Construction of a high-density simple sequence repeat consensus genetic map for pear (Pyrus spp.). Plant Mol Biol Rep 33(2):316–325CrossRefGoogle Scholar
  26. Çil A (2014) Kayseri İlinde Ayva (Cydonia oblanga Mill.) Seleksiyonu. Dissertation, University of ErciyesGoogle Scholar
  27. Costa RM, Magalhăes AS, Pereira JA et al (2009) Evaluation of free radical-scavenging and antihemolytic activities of quince (Cydonia oblonga) leaf: a comparative study with green tea (Camellia sinensis). Food Chem Toxicol 47:860–865CrossRefPubMedGoogle Scholar
  28. D’onofrio C, Morini S, Vitagliano C (1999) Isolation of protoplants from in vitro growing quince BA29 leaves. In Vitro Cell Dev Biol Plant 35:421–423CrossRefGoogle Scholar
  29. D’onofrio C, Morini S (2002a) Increasing NaCl and CaCl2 concentrations in the growth medium of quince leaves: I. Effects on somatic embryo and root regeneration. In Vitro Cell Dev Biol Plant 38:366–372CrossRefGoogle Scholar
  30. D’onofrio C, Morini S (2002b) Increasing NaCl and CaCl2 concentrations in the growth medium of quince leaves: II. Effects on shoot regeneration. In Vitro Cell Dev Biol Plant 38:373–377CrossRefGoogle Scholar
  31. D’onofrio C, Morini S (2005) Development of adventitious shoots from in vitro grown Cydonia oblonga leaves as influenced by different cytokinins and treatment duration. Biol Plant 49:17–21CrossRefGoogle Scholar
  32. Di Pierro EA, Gianfranceschi L, Di Guardo M et al (2016) A high-density, multi-parental SNP genetic map on apple validates a new mapping approach for outcrossing species. Nature Hortic Res 3:16057CrossRefGoogle Scholar
  33. Dickson EE, Arumuganathan K, Kresovich S, Doyle JJ (1992) Nuclear DNA content variation within the Rosaceae. Am J Bot 79:1081–1086CrossRefGoogle Scholar
  34. Dolcet-Sanjuan R, Mok DW, Mok MC (1991) Plantlet regeneration from cultured leaves of Cydonia oblonga L. (quince). Plant Cell Rep 10:240–242CrossRefPubMedGoogle Scholar
  35. Dumanoglu H, Gunes NT, Aygun A et al (2009) Analysis of clonal variations in cultivated quince (Cydonia oblonga ‘Kalecik’) based on fruit characteristics and SSR markers. New Zeal J Crop Hortic Sci 37(2):113–120CrossRefGoogle Scholar
  36. Dumaoglu H, Tuncel N, Çelik M, Ayfer M (1993) Farklı S.Ö. ayva klon anaçları üzerine aşılı Ankara armudu meyvelerinde soğukta muhafaza sırasındaki kalite değişimleri. Gıda 18(1):45–49Google Scholar
  37. Encyclopedia of Life (2013) Cydonia oblonga Mill. Quince. http://www.eol.org/pages/637321?category. Accessed 20 Sept 2017
  38. Ercan N, Özvardar S, Gönülşen N et al (1992) Ege bölgesine uygun ayva çeşitlerinin saptanması. Türkiye I. Ulusal Bahçe Bitkileri Kongres 1:527–529Google Scholar
  39. Erig AC, Schuch MW (2005) In vitro regeneration of adventitious shoots and roots of quince (Cydonia oblonga Mill.) cvs. MC and Adams, used as rootstocks for pear tree. R Bras Agrociencia Pelotas 11:419–424Google Scholar
  40. European Commission (2007) Minor fruit tree species: conservation, evaluation, exploitation and collection of minor fruit species. In: European Commission. Genetic resources in agriculture: a summary of the projects co-financed under council regulation (EC) No 1467/94, pp 56–59Google Scholar
  41. European Cooperative for Plant Genetic Resources (2009) The ECPGR minor fruit trees database. http://www.ecpgr.cgiar.org/databases/Crops/MinorFruitTree.htm. Accessed 23 June 2009
  42. Fattouch S, Caboni P, Coroneo V et al (2007) Antimicrobial activity of Tunusian quince (Cydonia oblonga Miller) pulp and peel polyphenolic extracts. J Agric Food Chem 55:963–966CrossRefPubMedGoogle Scholar
  43. Fiorentino A, D’Abrosca B, Pacifico S et al (2007) Isolation, structure elucidation, and antioxidant evaluation of cydonioside A, an unusual terpenoid from the fruits of Cydonia vulgaris. Chem Biodivers 4(5):973–979CrossRefPubMedGoogle Scholar
  44. Fiorentino A, D’Abrosca B, Pacifico S et al (2008) Isolation and structure elucidation of antioxidant polyphenols from quince (Cydonia vulgaris) peels. J Agric Food Chem 56:2660–2667CrossRefPubMedGoogle Scholar
  45. Fisichella M, Morini S (2003) Somatic embryo and root regeneration from quince leaves cultured in ventilated vessels or under different oxygen and carbon dioxide levels. In Vitro Cell Dev Biol Plant 39:402–408CrossRefGoogle Scholar
  46. Forni E, Penci M, Polesello A (1994) A preliminary characterization of some pectins from quince fruit (Cydonia oblonga Mill.) and prickly pear (Opuntia ficus indica) peel. Carbohydr Polym 23:231–234CrossRefGoogle Scholar
  47. Francescatto P, Pazzin D, Neto AG et al (2010) Evaluation of graft compatibility between quince rootstocks and pear scions. Acta Hortic 872:253–259CrossRefGoogle Scholar
  48. Galli Z, Halasz G, Kiss E et al (2005) Molecular identification of commercial apple cultivars with microsatellite markers. Hortic Sci 40:1974–1977Google Scholar
  49. Ganopoulos I, Merkouropoulos G, Pantazis S et al (2011) Assessing molecular and morpho-agronomical diversity and identification of ISSR markers associated with fruit traits in quince (Cydonia oblonga). Genet Mol Res 10(4):2729–2746CrossRefPubMedGoogle Scholar
  50. Garcia-Alonso M, Pascual-Teresa S, Santos-Buelga C, Rivas-Gonzalo JC (2004) Evaluation of antioxidant properties of fruits. Food Chem 84:13–18CrossRefGoogle Scholar
  51. Gharaghani A, Solhjoo S, Oraguzie N (2016) A review of genetic resources of pome fruits in Iran. Genet Res Crop Evol 63:151–172CrossRefGoogle Scholar
  52. Gianfranceschi L, Seglias N, Tarchini R, Komjanc M (1998) Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet 96:1069–1076CrossRefGoogle Scholar
  53. Giorgota A, Preda S, Isac M, Tulvinschi M (2009) Development of a micropropagation protocol for the Romanian quince (Cydonia oblonga) cultivar ‘Aurii’ and rootstocks ‘BN70’ and ‘A type’. Acta Hortic 839:105–110CrossRefGoogle Scholar
  54. Golubev VN, Kolechik AA, Rigavs UA (1990) Carbohydrate complex of the fruit of Chaenomeles maulei. Khim Prir Soedin 4:460–463Google Scholar
  55. Grimaldi F, Meneguzzi A, Weber GC et al (2016) Protocol for micropropagation of quince BA29 in semi solid media. Rev Ciên Agroveterinárias 15(3):266–270CrossRefGoogle Scholar
  56. Gulen H, Arora R, Kuden A et al (2002) Peroxidase isozyme profiles in compatible and incompatible pear-quince graft combinations. J Am Soc Hortic Sci 127(2):152–157Google Scholar
  57. Gulen H, Celik M, Polat M, Eris A (2005) Cambial isoperox-idases related to graft compatibility in pear-quince graft combinations. Turk J Agric For 29:83–89Google Scholar
  58. Gungor MK (1989) Ic Anadolu ayvalarinda seleksiyon calismalari. Dissertation, University of AnkaraGoogle Scholar
  59. Hamauzu Y, Hisako Y, Takaroni I et al (2005) Phenolic profile, antioxidant property, and anti-influenza viral activity of Chinese quince (Pseudocydonia sinensis Schneid.), quince (Cydonia oblonga Mill.), and apple (Malus domestica Mill.) fruits. J Agric Food Chem 53:928–934CrossRefPubMedGoogle Scholar
  60. Hamauzu Y, Inno T, Kume C et al (2006) Antioxidant and antiulcerative properties of phenolics from Chinese quince, quince, and apple fruits. J Agric Food Chem 54:765–772CrossRefPubMedGoogle Scholar
  61. Hegedűs A, Papp N, Stefanovits-Bányai É (2013) A review of nutritional value and putative health-effects of quince (Cydonia oblonga Mill.) fruit. Int J Hortic Sci 3–4Google Scholar
  62. Hričovsky I, Řezniček V, Sus J (2003) Jabloně a hrušně, kdouloně, mišpule. Priroda, Bratislava pp 53–54Google Scholar
  63. Hudina M, Stampar F, Mojca VM, Smole J (1999) Characterization of isozyme variability of pears (Pyrus communis L.) and quince (Cydonia oblonga Mill.) in various tissues. Acta Hortic 484:391–395Google Scholar
  64. Ianni G, Mariotti P (2005) Conservation and exploitation of woody plant genetic resources at the CNR/IVALSA Institute of Florence. In: The role of biotechnology. http://www.fao.org/biotech/docs/ianni.pdf. Accessed 6 June 2009
  65. Iketani H (1993) Chloroplast DNA diversity in Pyrus and related genera In: Gamma Field Symposium, Japan, vol 32, pp 63–69Google Scholar
  66. Kaneko Y, Nagaho I, Bang SW, Matsuzawa Y (2000) Classification of flowering quince cultivars (genus Chaenomeles) using random amplified polymorphic DNA markers. Breed Sci 50:139–142CrossRefGoogle Scholar
  67. Kimura T, Shi YZ, Shoda M, Kotobuki K (2002) Identification of asian pear varieties by SSR analysis. Breed Sci 52:115–121CrossRefGoogle Scholar
  68. Kopec K, Balík J (2008) Kvalitologie zahradnických produktů. MZLU, Brno, pp 135–136Google Scholar
  69. Kuden AB, Kuden A (2008) Germplasm collection and breeding studies of low chilling cultivars. Acta Hortic 772:503–506CrossRefGoogle Scholar
  70. Kyzlink V (1990) Principles of food preservation, 1st edn. Elsevier, AmsterdamGoogle Scholar
  71. Liebhard R, Ganfranceschi L, Koller B, Ryder CD (2002) Development and characterization of 14 new microsatellites in apple (Malus domestica Borkh.). Mol Breed 10:217–241Google Scholar
  72. Lutz A, Winterhalter P (1992) Isolation of additional carotenoid metabolites from quince fruit (Cydonia oblonga Mill.). J Agric Food Chem 40:1116–1120CrossRefGoogle Scholar
  73. Maarri KA, Arnaud Y, Miginiac E (1986) In vitro micropropagation of quince (Cydonia oblonga Mill.) Sci Hortic 28(4):315–321Google Scholar
  74. Marino G, Berardi G (2004) Different sealing materials for petri dishes strongly affect shoot regeneration and development from leaf explants of quince ‘BA 29’. In Vitro Cell Dev Biol Plant 40:384–388CrossRefGoogle Scholar
  75. Marino G, Franchin C, Marcolini G, Biondi S (2008) Adventitious shoot formation in cultured leaf explants quince and pear is accompanied by different patterns of ethylene and polyamine production, responses to aminoethoxywinylglycine. J Hortic Sci Biotechnol 83:260–266CrossRefGoogle Scholar
  76. McCabe C (1996) Enjoying the forbidden fruit. Saveur 14:105–110Google Scholar
  77. Mingozzi M, Morini S (2009) In vitro cultivation donor quince shoots affects subsequent morphogenesis in leaf explants. Biol Planta 53:141–144CrossRefGoogle Scholar
  78. Mir SA, Masoodi FA, Gani A et al (2015) Evaluation of antioxidant properties of methanolic extracts from different fractions of quince (Cydonia oblonga Miller). Adv Biomed Pharma 2(1):1–6CrossRefGoogle Scholar
  79. Miranda C, Urrestarazu J, Santesteban LG, Royo JB (2010) Genetic diversity and structure in a collection of ancient Spanish pear cultivars assessed by microsatellite marker. J Am Soc Hortic Sci 135:428–437Google Scholar
  80. Mnaica-Berto R, Pegoraro C, Mistura CC et al (2013) Genetic similarity between quince cultivars evaluated by AFLP markers. Pesquisa Agropec Brasil 48(5):568–571CrossRefGoogle Scholar
  81. Moradi S, Saba MK, Mozafari AA, Abdollahi H (2017) Physical and biochemical changes of some Iranian quince (Cydonia oblonga Mill) genotypes during cold storage. J Agric Sci Tech 19:377–388Google Scholar
  82. Motalebipour EZ, Kafkas S, Özongun Ş, Atay AN (2015) Construction of dense genetic linkage maps of apple cultivars Kaşel-41 and Williams Pride by simple sequence repeat markers. Turk J Agric For 39:1–9CrossRefGoogle Scholar
  83. Mushtaq M, Wani SM (2013) Polyphenols and human health—a review. Int J Pharm Bio Sci 4:338–360Google Scholar
  84. Naf R, Velluz A, Decorzant R, Naf F (1991) Structure and synthesis of 2 novel ionone-type compounds identified in quince brandy (Cydonia oblonga Mill.). Tetrahedron Lett 32:753–756CrossRefGoogle Scholar
  85. Nagy-Dèri H (2011) Morphological investigations on anthers and pollen grains of some quince cultivars. Acta Biol Szeged 55:231–235Google Scholar
  86. Naik S, Hampson C, Gasic K et al (2006) Development and linkage mapping of ESTs and RGAs for functional gene homologues in apple. Genome 49:959–968CrossRefPubMedGoogle Scholar
  87. National Center for Biotechnology Information (2017) GenBank: http://www.ncbi.nlm.nih.gov/. Accessed 24 Sept 2017
  88. Oliveira AP, Pereira JA, Andrade PB et al (2007) Phenolic profile of Cydonia oblonga Miller leaf. J Agric Food Chem 55(19):7926–7930CrossRefPubMedGoogle Scholar
  89. Orhan E, Nardemir G, Agar G, Ercisli S (2014) Genetic variation among quince (Cydonia oblonga Mill.) genotypes sampled from the Coruh valley in Turkey. Genet Mol Res 13(1):445–449CrossRefPubMedGoogle Scholar
  90. Papikhin PV, Muratova SA, Dorokhova NV (2007) On improvement of effectiveness of remote hybridization in pome fruit crops. Sadovostvo I Vinogradarstvo 6:2–3Google Scholar
  91. Pierantoni L, Cho KH, Shin IS et al (2004) Characterisation and transferability of apple SSRs to two European pear F1 populations. Theor Appl Genet 109:1519–1524CrossRefPubMedGoogle Scholar
  92. Pinar H, Kaymak S, Ozongun S et al (2016) Morphological and molecular characterization of major quince cultivars from Turkey. Not Bot Hortic Agrobot 44(1):72–76CrossRefGoogle Scholar
  93. Postman JD (2008) The USDA Quince and Pear Genebank in Oregon, a world source of fire blight resistance. Acta Hortic 793:357–362CrossRefGoogle Scholar
  94. Postman J (2009) Cydonia oblonga: The unappreciated quince. Arnoldia 67(1):2–9Google Scholar
  95. Roach FA (1985) Quinces. Cultivated fruit of Britain: their origin and history. Blackwell, London, pp 220–225Google Scholar
  96. Rodriguez-Guisado I, Hernandez F, Melgarejo P et al (2009) Chemical, morphological and organoleptical characterisation of five Spanish quince tree clones (Cydonia oblonga Miller). Sci Hortic 122:491–496CrossRefGoogle Scholar
  97. Rogers WS (1955) Pomology. In: Annual report of the East malling research station 01 Oct 1954–30 Sept 1954, pp 20–27Google Scholar
  98. Rop O, Balik J, Reznicek V et al (2011) Chemical characteristics of fruits of some selected quince (Cydonia oblonga Mill.) cultivars. Czech J Food Sci 29:65–73CrossRefGoogle Scholar
  99. Rudenko IS (1983) New intergeneric apple x quince forms (xCydolus). Sadovodstvo, RussiaGoogle Scholar
  100. Rudenko IS (1984) Producing a new fruit crop, quince x apple (xCydolus). Geneticheskie osnovy selektsii sel’skokho-zyaistvennykh rastenii I zhivotnykh, RussiaGoogle Scholar
  101. Rudenko IS (1985) Hybrid between pear and quince (Pyronia). Sadovodstvo Vinogradarstvo I Vinodelie Moldavii 10:55–57Google Scholar
  102. Rudenko IS (1987) Aspects of morphology and pollen viability in F2 quince x apple hybrids with different genomes in relation to disturbances in microsporogenesis. Gametnaya i zygotnaya selektsiya Respublikanskaya konferentsiya, 23 Iyunya, 1986. Stiinca. Kishinev, Moldavian SSR, pp 102–106Google Scholar
  103. Rudenko IS, Rudenko II (1994) Genotypic variation in apple ×  quince progenies. In: Progress in temperate fruit breeding developments in plant breeding, vol 1, pp 229–233Google Scholar
  104. Sahin M, Misirli A (2016) Ülkemizde ve Dünyada Ayva Islahı Çalışmaları. Nevşehir Bilim ve Teknoloji Dergisi TARGİD. J Agric Sci 286–294Google Scholar
  105. Sanchez EE, Mendez RA, Daly LS et al (1988) Characterization of quince (Cydonia) cultivars using polyacrylamide gel electrophoresis. J Environ Hortic 6:53–59Google Scholar
  106. Schlotterer C, Tautz D (1992) Slippage syntesis of simple sequence DNA. Nucl Acids Res 20:211–215CrossRefPubMedGoogle Scholar
  107. Shimura I, Ito Y, Seiki K (1983) Intergeneric hybrid between Pyrus serotina and Cydonia oblonga. J Jpn Soc Hortic Sci 52:243–249CrossRefGoogle Scholar
  108. Silva BM, Andrade PB, Mendes GC et al (2002) Study of the organic acid composition of quince (Cydonia oblonga Miller) fruit and jam. J Agric Food Chem 50:2313–2317CrossRefPubMedGoogle Scholar
  109. Silva BM, Andrade PB, Valentao P et al (2004) Quince (Cydonia oblonga Miller) fruit (pulp, peel, and seed) and jam: antioxidant activity. J Agric Food Chem 52:4705–4712CrossRefPubMedGoogle Scholar
  110. Silva BM, Andrade PB, Ferreres F et al (2005) Composition of quince (Cydonia oblonga Miller) seeds: phenolics, organic acids and free amino acids. Nat Prod Res 19(3):275–281CrossRefPubMedGoogle Scholar
  111. Silva BM, Valentão P, Seabra RM, Andrade PB (2008) Quince (Cydonia oblonga Miller): an interesting dietary source of bioactive compounds. In: Papadopoulos KN (ed) Food chemistry research developments. Nova Sci Publ New York, pp 243–266Google Scholar
  112. Stancevic A, Nikolic M (1992) Quince breeding in Yugoslavia. Acta Hortic 317:107–110CrossRefGoogle Scholar
  113. Staniene G, Stanys V (2004) Plants regeneration from leaves of Cydonia oblonga cultivars. Acta Univarsitatis Latviensis Biol 676:231–233Google Scholar
  114. Sun J, Chu YF, Wu X, Liu RH (2002) Antioxidant and antiproliferative activities of common fruits. J Agric Food Chem 50:7449–7454CrossRefPubMedGoogle Scholar
  115. Sykes JT (1972) A description of some quince cultivars from western Turkey. Econ Bot 26:21–31CrossRefGoogle Scholar
  116. Tetera V (2006) Ovoce Bilych Karpat, 1st edn. CSOP Press, Veseli nad MoravouGoogle Scholar
  117. Tian L, Gao Y, Cao Y, Liu F (2012) Identification of Chinese white pear cultivars using SSR markers. Genet Res Crop Evol 59:317–326CrossRefGoogle Scholar
  118. Topcu H, Kafkas S, Doğan A et al (2015) Genetic relatedness among quince (Cydonia oblonga Miller) accessions from Turkey using amplified fragment length polymorphisms. J Appl Bot Food Qual 88:197–201Google Scholar
  119. University of Reading (2009) National fruit collection. http://www.nationalfruitcollection.org.uk/. Accessed 23 June 2009
  120. USDA, ARS (2009) Quince genetic resources. http://www.ars.usda.gov/Main/docs.htm?docid=11309. Accessed 5 June 2009
  121. Valesco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus X domestica Borkh.). Nat Genet 42:833–839CrossRefGoogle Scholar
  122. Vitkovskii VL, Denisov VP (1991) N. I. Vavilov and expeditions to study fruit crops and grape in Central Asia. Sbornik Nauchnykh Trudov po Prikladnoi Botanike, Genetike I Selektsii, SSR140:97–111Google Scholar
  123. Wang X, Jia W, Zhao A, Wang X (2006) Anti-influenza agents from plants and traditional Chinese medicine. Phytother Res 20:335–341CrossRefPubMedGoogle Scholar
  124. Wojdylo A, Oszmianski J, Teleszko M, Sokol-Letowska A (2013) Composition and quantification of major polyphenolic compounds, antioxidant activity and colour properties of quince and mixed quince jams. Int J Food Sci Nutr 64:749–756CrossRefPubMedGoogle Scholar
  125. Wu J, Wang Z, Shi Z et al (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408CrossRefPubMedPubMedCentralGoogle Scholar
  126. Xuan H, Spann D, Neumüller M (2013) Identifying quince (Cydonia oblonga) cultivars by means of apple and pear microsatellites. Acta Hortic 976: 305–310Google Scholar
  127. Yamamoto T, Kimura T, Sawamura Y et al (2002) Simple sequence repeats for genetic analysis of pear. Euphytica 124:129–137CrossRefGoogle Scholar
  128. Yamamoto T, Kimura T, Soejima J et al (2004) Identification of quince varieties using SSR markers developed from pear and apple. Breed Sci 54(3):239–244CrossRefGoogle Scholar
  129. Yamamoto T, Kimura T, Terakami S et al (2007) Integrated reference genetic linkage maps of pear based on SSR and AFLP markers. Breed Sci 57:321–329CrossRefGoogle Scholar
  130. Yezhov VN, Smykov AV, Smykov VK et al (2005) Genetic resources of temperate and subtropical fruit and nut species at the Nikita botanical gardens. Hort Sci 40:5–9Google Scholar
  131. Yüksel C, Mutaf F, Demirtaş I et al (2013) Characterization of Anatolian traditional quince cultivars, based on microsatellite markers. Genet Mol Res 12(4):5880–5888Google Scholar
  132. Zalunskaite I, Kavaliauskaite D, Vinskiene J et al (2007) Shoot regeneration from leaf explants of Cydonia oblonga cultivars in vitro. Lithuanian Inst Hortic Lithuanian Univ Agric 26:251–258Google Scholar
  133. Zhang Q, Li J, Zhao Y et al (2012) Evaluation of genetic diversity in Chinese wild apple species along with apple cultivars using SSR markers. Plant Mol Biol Rep 30:539–546CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Salih Kafkas
    • 1
  • Burhanettin Imrak
    • 1
  • Nesibe Ebru Kafkas
    • 1
  • Abdulkadir Sarıer
    • 1
  • Ali Kuden
    • 1
  1. 1.Department of Horticulture, Faculty of AgricultureUniversity of CukurovaAdanaTurkey

Personalised recommendations