Advertisement

Genetic Improvement of Papaya (Carica papaya L.)

  • Fredah Karambu Rimberia
  • Francis Kweya Ombwara
  • Naomi Nzilani Mumo
  • Elijah Miinda Ateka
Chapter

Abstract

Arising from a relatively isolated center of origin, papaya has spread throughout all tropical and subtropical countries through human intervention. This global dispersal has coincided with continuous improvement of the cultivated plants through breeding programs often designed to improve the agronomic characters and to address biotic and abiotic stresses that affect papaya production. Papaya production is threatened by a myriad of problems including devastating pests and diseases as well as the inability for both farmers and researchers alike to differentiate among the three sex types, male, female and hermaphrodite at the seedling stage, among others. Many attempts have been made by researchers over the years to resolve the problems through conventional and biotechnological techniques. Conventional plant breeding has given rise to varieties that are resistant to diseases as well as high yielders of quality fruits. However, conventional techniques require 12–14 years to develop new papaya varieties. Besides, devastating viral diseases like papaya ringspot virus (PRSV) have proved almost impossible to control through conventional means. The innovative technologies and growing understanding to manipulate the papaya phenotype at the molecular level provide new opportunities for the improvement of papaya. Through gene transfer technology, it is possible to develop transgenic papaya with pest and disease resistance as well as improved nutritional quality. This chapter provides insight into conventional breeding of papaya, the role of tissue and protoplast culture as well as molecular techniques in papaya improvement such as genetic transformation, mutation breeding and marker assisted selection and breeding. In addition, the potential of parthenocarpy as well as polyploidy and somaclonal variation in papaya breeding are discussed.

Keywords

Aluminum tolerance Anther culture Carica papaya L. Carmine spider mite Dwarf papaya Genetic transformation Mating systems 

Notes

Acknowledgements

The authors thank the Jomo Kenyatta University of Agriculture and Technology (JKUAT), Research Production and Extension (RPE) Division for funding the papaya varietal development project from 2008 to 2014, the Regional Universities Forum for Capacity Building in Agriculture (RUFORUM) for funding papaya tissue culture project 2010–2012 and the Africa Union-African innovation-JKUAT and PAUSTI (Africa –ai-JAPAN) for funding agronomic evaluation of papaya varieties from 2015 to date.

References

  1. Abreu IS, Carvalho CR, Clarindo WR (2014) Massal induction of Carica papaya L. ʻGolden’ somatic embryos and somaclone screening by flow cytometry and cytogenetic analysis. Cytol 79(4):475–484Google Scholar
  2. Abreu IS, Carvalho CR, Soares FAF (2015) Early sex discrimination in Carica papaya by nuclei FISH. Euphy 206:667–676.  https://doi.org/10.1007/s10681-015-1485-1CrossRefGoogle Scholar
  3. Anandan R, Thirugnanakumar S, Sudhakar D et al (2011) In vitro organogenesis and plantlet regeneration of Carica papaya L. J Agri Tech 7(5):2139–2148Google Scholar
  4. Aravind G, Bhowmik D, Duraivel S et al (2013) Traditional and medicinal uses of Carica papaya. J Med Plants Stud 1(1):7–15Google Scholar
  5. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218CrossRefGoogle Scholar
  6. Ashmore SE, Drew RA, Kaity A (2011) Storage stability using cryopreservation: a case study in papaya. Acta Hort 918:125–130CrossRefGoogle Scholar
  7. Asudi GO, Ombwara FK, Rimberia FK et al (2010) Morphological diversity of Kenyan papaya germplasm. Afr J Biotech 9(51):8754–8762Google Scholar
  8. Asudi GO, Ombwara FK, Rimberia FK et al (2013) Evaluating diversity among Kenyan papaya germplasm using simple sequence repeat markers. Afr J Food Agr Nutr Dev 13(1):7307–7324Google Scholar
  9. Badillo VM (2000) Carica L. vs. Vasconcella St. Hil. (Caricaceae) con la rehabilitación de este ultimo. Ernstia 10:74–79Google Scholar
  10. Bennett MD, Leitch IJ (2005) Plant DNA C-values database (Release 4.0, October 2005)Google Scholar
  11. Biswas GC, Islam M, Haque MM et al (2004) Some biological aspects of carmine spider mite Tetranychus cinnabarinus Boisd infecting eggplant from Raishahi. J Biol Sci 4:588–591CrossRefGoogle Scholar
  12. Boshra V, Tajul AY (2013) Papaya—an innovative raw material for food and pharmaceutical processing industry. Health Environ J 4(1):68–75Google Scholar
  13. Broekaert WF, Terras FRG, Cammue BPA, Cammune WOR (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Phys 108:1352–1358CrossRefGoogle Scholar
  14. Bukhori MFM, Jin CS, Khalid N et al (2013) Improved protocol for high frequency plant regeneration through somatic embryogenesis in Carica papaya. Res Bio 4(5):9–19Google Scholar
  15. Cai W, Gonsalves C, Tennant P et al (1999) A protocol for efficient transformation and regeneration of Carica papaya L. In vitro Cell Dev Biol Plant 35:61–69CrossRefGoogle Scholar
  16. Calderón MV, Mijangos-Cortés JO, Zavala MJ et al (2016) Genetic characterization by amplified fragment length polymorphism (AFLP) markers and morphochemical traits of Carica papaya L. genotypes. Afr. J Biotech 15(21):948–959Google Scholar
  17. Caple AD, Cheah KT (2016) Micropropagation of hermaphrodite Carica papaya L ‘Rainbow’ seedlings via axillary bud pathway. Biotechnology BIO-12., Published by the College of Tropical Agriculture and Human Resources (CTAHR), University of Hawaii, pp 1–5Google Scholar
  18. Carvalho F, Renner SS (2012) A dated phylogeny of the papaya family (Caricaceae) reveals the crop’s closest relatives and the family’s biogeographic history. Mol Phylogen Evol 65(1):46–53CrossRefGoogle Scholar
  19. Chan YK (2004) Field performance of papaya lines selected for tolerance to ringspot virus disease. J Trop Agr Food Sci 31(2):128–137Google Scholar
  20. Chan YK (2009) Breeding Papaya (Carica papaya L.) In: Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops: tropical species. C Springer Science Business Media, LLC. pp 121–159Google Scholar
  21. Chan YK, Lee HK, Rusna I (2007) Irradiation-induced variations in M2 populations of Eksotika papaya. J Trop Agric Fd Sci 35(1):49–57Google Scholar
  22. Chaves-Bedoya G, Nunez V (2007) A SCAR marker for the sex types determination in Colombian genotypes of Carica papaya. Euphy 153:215–220CrossRefGoogle Scholar
  23. Chen MH (1994) Regeneration of pants from protoplasts of Carica species (papaya). In: Bajaj J (ed) Biotechnology in forestry and agriculture, vol 29. Springer-Verlag, NY, pp 52–60Google Scholar
  24. Chen MH, Chen CC (1992) Plant regeneration from Carica protoplasts. Plant Cell Rep 11:404–407CrossRefPubMedGoogle Scholar
  25. Clarindo WR, de Carvalho CR, Araujo FS et al (2008) Recovering polyploid papaya in vitro regenerants as screened by flow cytometry. Plant Cell Tiss Organ Cult 92:207–214CrossRefGoogle Scholar
  26. Cociancich S, Ghazi A, Hetru C et al (1993) Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J Biol Chem 268:19239–19245PubMedGoogle Scholar
  27. Conover RA (1976) A program for development of papayas tolerant to the distortion ringspot virus. Proc Flor State Hort Soc 89:229–231Google Scholar
  28. Conover RA, Litz RE (1978) Progress in breeding papayas with tolerant to papaya ringspot virus. Proc Flor State Hort Soc 91:182–184Google Scholar
  29. Costa FR, Pereira TNS, Gabriel APC et al (2011) ISSR markers for genetic relationships in Caricaceae and sex differentiation in papaya. Crop Breed Appl Biotech 11:352–357CrossRefGoogle Scholar
  30. De la Fuente J, Ramirez-Rodriguez V, Cabrera-Ponce J, Herrera-Estrella L (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568CrossRefPubMedGoogle Scholar
  31. Deputy JC, Ming R, Ma H et al (2002) Molecular markers for sex determination in papaya (Carica papaya L.). Theor Appl Genet 106:107–111CrossRefPubMedGoogle Scholar
  32. Dhekney SA (2004) Molecular investigations, cryopreservation and genetic transformation of papaya (Carica papaya L.) for cold hardiness. Ph.D. dissertation University of Florida, Gainesville FL 32611, USAGoogle Scholar
  33. Dinesh MR (2010) Papaya breeding in India. Acta Hort 851:69–75CrossRefGoogle Scholar
  34. Ding X, Gopalakrishnan B, Johnson L et al (1998) Insect resistance of transgenic tobacco expressing an insect chitinase gene. Transgen Res 7:77–84CrossRefGoogle Scholar
  35. Drew RA (1988) Rapid clonal propagation of papaya in vitro from mature field grown trees. HortScience 23:609–611Google Scholar
  36. Ellis RH, Hong TD, Roberts EH (1991) Effect of storage temperature and moisture on the germination of papaya seeds. Seed Sci Res 1(01):69–72CrossRefGoogle Scholar
  37. Eustice M, Yu Q, Lai CW et al (2008) Development and application of microsatellite markers for genomic analysis of papaya. Tree Genet Genome 4(2):333–341CrossRefGoogle Scholar
  38. Farzana ARF, Palkadapala PG, Meddegoda KM et al (2008) Somatic embryogenesis in papaya (Carica papaya L.) cv. Rathna. J Nat Sci Foun Sri Lanka 36(1):41–50Google Scholar
  39. Fermin GA, Castro LT, Tennant PF (2010) CP-transgenic and non-transgenic approaches for the control of papaya ringspot: current situation and challenges. Transgen Plant J 4(1):1–15Google Scholar
  40. Fitch M, Manshardt R, Gonsalves D (1992) Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Nat Biotech 10:1466–1472CrossRefGoogle Scholar
  41. Food and Agricultural Organization (2017) Statistical databases. http://apps.fao.org. Accessed 18 May 2017
  42. Gatambia EK, Kihurani AW, Rimberia FK et al (2016) In vitro meristem culture for rapid regeneration of papaya plantlets in liquid media. ARRB 9(1):1–7CrossRefGoogle Scholar
  43. Gonsalves D, Ferreira S (2003) Transgenic papaya: a case for managing risks of papaya ringspot virus in Hawaii. Transgenic papaya: a case for managing risks of papaya ringspot virus in Hawaii. Plant Health Progress  https://doi.org/10.1094/php-2003-1113-03-rv
  44. Gyanchand, Sharma MK, Kumar S et al (2015) In-vitro androgenesis in papaya (Carica papaya L.) cv. Pusa Nanha. J Appl Nat Sci 7 (1):273–278Google Scholar
  45. Hang NT, Chau NM (2010) Radiation induced mutation for improving papaya variety in Vietnam. Acta Hort 851:77–80.  https://doi.org/10.17660/ActaHortic.2010.851.8CrossRefGoogle Scholar
  46. Hofmeyr JDJ (1938) Genetic studies of Carica papaya L. S Afr J Sci 35:300–304Google Scholar
  47. Horovitz S, Jimenez H (1967) Cruzameintos interspecificos intergenericos en Caricaceas y sus implcaciones fitoecnicas. Agron Trop 17:323–343Google Scholar
  48. Husselman JH, Daneel MS, Sippel AD et al (2016) Mutation breeding as an effective tool for papaya improvement in South Africa. Acta Hort 1111:71–78CrossRefGoogle Scholar
  49. Imungi JK, Wabule MN (1990) Some chemical characteristics and availability of vitamin A and C from Kenyan varieties of papaya (Carica papaya L.). Ecol Food Nutr 24:115–120CrossRefGoogle Scholar
  50. Khuspe SS, Hendre RR, Mascarenhas AF et al (1980) Utilization of tissue culture to isolate intergeneric hybrids in Carica L. In: Rao PS, Heble MR, Chadla MS (eds) Plant tissue culture, genetic manipulation and somatic hybridization of plant cells. Bhaba Atomic Research Centre, India, pp 198–205Google Scholar
  51. Kramer K, Muthukrishnan S (1997) Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochem Mol Biol 27(11):887–900CrossRefPubMedGoogle Scholar
  52. Krishna KL, Paridhavi M, Patel JA (2008) Review on nutritional, medicinal and pharmacological properties of papaya (Carica papaya Linn.). Nat Prod Radian 7(4):364–373Google Scholar
  53. Kumar M, Kumar M, Choudhary V (2017) Effect of seed treatment by ethyl methane sulphonate (EMS) on fruit quality of papaya (Carica papaya L.) cv. Pusa Dwarf. Int J App Chem 13(1):145–150Google Scholar
  54. Lemos EGM, Silva CLSP, Zaidan HA (2002) Identification of sex in Carica papaya L. using RAPD markers. Euphy 12:179–184CrossRefGoogle Scholar
  55. Liao Z, Yu Q, Ming R (2017) Development of male-specific markers and identification of sex reversal mutants in papaya. Euphy 213(2):53.  https://doi.org/10.1007/s10681-016-1806-zCrossRefGoogle Scholar
  56. Litz RE, Conover RA (1978) Recent advances in papaya tissue culture. Proc Fla State Hort Soc 91:180–182Google Scholar
  57. Litz RE, Conover RA (1979) In vitro improvement of Carica papaya L. Proc Trop Reg Amer Soc Hort Soc 23:157–159Google Scholar
  58. Louw AJ (2016) Papaya breeding—a conventional approach. Acta Hort 1111:61–66CrossRefGoogle Scholar
  59. Magdalita PM, Laurena AC, Yabut-Perez BM et al (2002) Progress in the development of transgenic papaya: transformation of Solo papaya using acc synthase antisense construct. Acta Hort 575:171–176CrossRefGoogle Scholar
  60. Mahadevamma M, Dinesh MR, Kumari VR et al (2012) Evaluation of induced variability in papaya (Carica papaya L.) by physical mutagenesis. CIBTech J Biotech 1(1):66Google Scholar
  61. Manshardt RM (1992) Papaya. In: Hammerschlag FA, Litz RE (eds) Biotechnology of perennial fruit crops. CAB international, pp 489–511Google Scholar
  62. McCafferty H, Moore P, Zhu J (2006) Improved Carica papaya tolerance to carmine spider mite by the expression of Manduca sexta chitinase transgene. Transgen Res 15:337–347CrossRefGoogle Scholar
  63. Mehrotra S, Goel MK, Kukreja AK et al (2007) Efficiency of liquid culture systems over conventional micropropagation: a progress towards commercialization. Afr J Biot 6(13):1484–1492Google Scholar
  64. Milind P, Gurditta (2011) Basketful benefits of papaya. Intl Res J Phar 2(27):6–12Google Scholar
  65. Ming R, Hou S, Feng Y et al (2008) NIH Public Access. 452(7190):991–996. https://doi.org/10.1038/nature06856
  66. Mishra M, Shukla N, Chandra R (2007) Micropropagation of papaya (Carica papaya L.). In: Jain SM, Haggman H (eds) Protocols for micropropagation of woody trees and fruits. Springer, pp 437–441Google Scholar
  67. Mumo NM, Rimberia FK, Mamati GE et al (2013) In vitro regeneration of selected Kenyan papaya (Carica papaya L.) lines through shoot tip culture. Afr J Biot 12(49):6826–6832Google Scholar
  68. Nakasone HY, Paull RE (1998) Tropical fruits. CAB International, pp 239–269Google Scholar
  69. Nishijima W (2002) A new disease hits papaya. Agric Hawaii 3:26Google Scholar
  70. Nishina M, Zee F, Ebesu R et al (2000) Papaya production in Hawaii. Fruits Nuts 3:1–8Google Scholar
  71. Noorda-Nguyen K, Jia R, Aoki A et al (2010) Identification of disease tolerance loci to Phytophthora palmivora in Carica papaya using molecular marker approach. Acta Hort 851:189–196CrossRefGoogle Scholar
  72. Ocampo J, Dambier D, Ollitrault P et al (2006) Microsatellite markers in Carica papaya L.: isolation, characterization and transferability to Vasconcellea species. Mol Ecol Notes 6(1):212–217CrossRefGoogle Scholar
  73. Ogata T, Yamanaka S, Shoda M et al (2016) Current status of tropical fruit breeding and genetics for three tropical fruit species cultivated in Japan: pineapple, mango, and papaya. Breed Sci 66:69–81CrossRefPubMedPubMedCentralGoogle Scholar
  74. Oloyede OI (2005) Chemical profile of unripe pulp of Carica papaya. Pak J Nut 4:379–381CrossRefGoogle Scholar
  75. Panjaitan SB, Aziz MA, Rashid AA et al (2007) In vitro plantlet regeneration from shoot tip of field-grown hermaphrodite papaya (Carica papaya L. cv. Eksotika). Int J Agr Bio 6:827–832Google Scholar
  76. Parasnis AS, Ramakrishna W, Chowdari KV et al (1999) Microsatellite (GATA) reveals sex specific differences in papaya. Theor Appl Genet 99:1047–1052.  https://doi.org/10.1007/s001220051413CrossRefGoogle Scholar
  77. Parasnis AS, Gupta VS, Tamhankar SA et al (2000) A highly reliable sex diagnostic PCR assay for mass screening of papaya seedlings. Mol Breed 6:337–344.  https://doi.org/10.1023/A:1009678807507CrossRefGoogle Scholar
  78. Paterson AH, Felker P, Hubbell SP et al (2008) The fruits of tropical plant genomics. Trop Plant Biol 1(1):3–19.  https://doi.org/10.1007/s12042-007-9004-8CrossRefGoogle Scholar
  79. Popenoe W (1974) Manual of tropical and subtropical fruits. Hafner Press, NY, pp 225–249Google Scholar
  80. Purcifull D (1972) CMI/AAB Descr. Pl. Viruses, vol 84, p 3. http://www.dpvweb.net/dpv/showdpv.php?dpvno=084
  81. Ray PK (2002) Breeding tropical and subtropical fruits. Narosa Publishing House, New Delhi, pp 106–128Google Scholar
  82. Reddy SR, Krishna RB, Reddy KJ (2012) Sex determination of papaya (Carica papaya) at seedling stage through RAPD markers. Res Biotech 3:21–28Google Scholar
  83. Reuveni O, Shlesinger DR, Lavi U (1990) In vitro clonal propagation of dioecious Carica papaya. Plant Cell, Tissue Organ Cult 20:41–46CrossRefGoogle Scholar
  84. Rimberia F, Adaniya S (2010) Recent advances in breeding of papaya. Another culture: a practical methodology for breeding female papaya. VDM Verlag Dr. Muller, Germany, pp 13–64Google Scholar
  85. Rimberia FK, Sunagawa H, Urasaki N et al (2005) Embryo induction via anther culture in papaya and sex analysis of the derived plantlets. Sci Hort 103:199–298CrossRefGoogle Scholar
  86. Rimberia FK, Adaniya S, Etoh T et al (2006a) Sex and ploidy of anther culture derived papaya (Carica papaya L.). Euphy 149:53–59CrossRefGoogle Scholar
  87. Rimberia FK, Adaniya S, Kawajiri M et al (2006b) Parthenocarpic ability of papaya and promotion of fruit swelling by gibberellin treatment. J Appl Hort 8(1):58–61Google Scholar
  88. Rimberia FK, Adaniya S, Ishimine Y et al (2007) Morphology of papaya plants derived via anther culture. Sci Hort 111(3):213–219CrossRefGoogle Scholar
  89. Rodriquez-Pastor MC, Galan-Sauco V, Herero-Romero M (1990) Evaluation of papaya autogamy. Fruits 45:387–391Google Scholar
  90. Rosales LS, Leor NB, Castro SR et al (2000) Coat protein sequence comparison of three Mexican isolates of papaya ring spot virus with other geographical isolates reveal a close relationship to American and Australian isolates. Arch Virol 145:835–843CrossRefGoogle Scholar
  91. Saksena P (2013) Cell and tissue culture studies in papaya (Carica papaya L.)—a brief review. Nanobiotech Univer 4(1&2):1–11Google Scholar
  92. Sankat CK, Maharaj R (1997) Papaya. In: Mitra SK (ed) Postharvest physiology and storage of tropical and subtropical fruits. UK CAB International, pp 167–189Google Scholar
  93. Saran PL, Choudhary R (2013) Drug bioavailability and traditional medicaments of commercially available papaya—a review. Afr J Agr Res 8(25):3216–3223Google Scholar
  94. Saran PL, Choudhary R, Solanki IS et al (2015) Genetic variability and relationship studies in new Indian papaya (Carica papaya L.) germplasm using morphological and molecular markers. Turkish J Agri Forest 39:310–321.  https://doi.org/10.3906/tar-1409-148CrossRefGoogle Scholar
  95. Scheldeman X, Van Damme P (2003) Horticultural potential of Andean fruit crops, exploring their centre of origin. In: Düzyaman E, Tüzel Y (eds) Proceedings of the international symposium on sustainable use of plant biodiversity. Antalya, January 2003. Acta Hort 598:97–102Google Scholar
  96. Setargie A, Mekbib F, Abraha E (2015) In vitro propagation of papaya (Carica papaya L.). World J Agri Sci 11 (2):84–88Google Scholar
  97. Singh K, Ram M, Kumar A (2010) Forty years of papaya research at Pusa, Bihar, India. Acta Hort 851:81–88CrossRefGoogle Scholar
  98. Soni A, Prakash J, Kaluram SK et al (2017) Efficiency of morphological, physiological and biochemical parameters related to sex expression in papaya. Indian J Hort 74(1):6–10.  https://doi.org/10.5958/0974-0112.2017.00005.6CrossRefGoogle Scholar
  99. Storey WB (1938) Segregations of sex types in solo papaya and their application to the selection of seed. Proc Amer Soc Hort Sci 35:83–85Google Scholar
  100. Storey WB (1953) Genetics of the papaya. J Hered 44:70–78CrossRefGoogle Scholar
  101. Sun DQ, Guo QG, Lu XH et al (2011) Production of triploid plants of papaya by endosperm culture. Plant Cell Tiss Org Cult 104:23–29CrossRefGoogle Scholar
  102. Teixeira da Silva JA, Rashid Z, Tan Nhut D et al (2007) Papaya (Carica papaya L.) biology and biotechnology. Tree For Sci Biotech 1(1):47–73Google Scholar
  103. Terras F et al (1995) Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7:573–588CrossRefPubMedPubMedCentralGoogle Scholar
  104. Tripathi S, Suzuki JY, Ferreira SA et al (2008) Papaya ringspot virus-P: characteristics, pathogenicity, sequence variability and control. Mol Plant Path 9(3):269–280CrossRefGoogle Scholar
  105. Tsai CC, Shih HC, Ko YZ et al (2016) Direct LAMP Assay without prior DNA purification for sex determination of papaya. Int J Mol Sci 17(1630):1–12.  https://doi.org/10.3390/ijms17101630wCrossRefGoogle Scholar
  106. Tsay HS, Su CY (1985) Anther culture of papaya (Carica papaya L.). Plant Cell Rep 4:28–30CrossRefPubMedGoogle Scholar
  107. Ueno H, Urasaki N, Natsume S et al (2015) Genome sequence comparison reveals a candidate gene involved in male-hermaphrodite differentiation in papaya (Carica papaya) trees. Mol Genet Genom 290:661–670CrossRefGoogle Scholar
  108. Urasaki N, Tokumoto M, Tarora K et al (2002a) A male and hermaphrodite specific RAPD marker for papaya (Carica papaya L.). Theor Appl Genet 104:281–285CrossRefPubMedGoogle Scholar
  109. Urasaki N, Tarora K, Uehara T et al (2002b) Rapid and highly reliable sex diagnostic PCR assay for papaya (Carica papaya L.). Breed Sci 52:333–335CrossRefGoogle Scholar
  110. Van Droogenbroeck B, Kyndt T, Maertens I et al (2004) Phylogenetic analysis of the highland papayas (Vasconcellea) and allied genera (Caricaceae) using PCR-RFLP. Theor Appl Genet 108:1473–1486CrossRefPubMedGoogle Scholar
  111. Villegas VN (1997) Carica papaya L. In: Verheij EWM, Coronel RE (eds) Plant resources of South-East Asia 2: edible fruits and nuts. PROSEA Foundation, Bogor, Indonesia, pp 108–112Google Scholar
  112. Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc Roy Soc Lon B 268:2211–2220CrossRefGoogle Scholar
  113. Yeh S, Gonsalves D (1994) Practices and perspective of control of papaya ringspot virus by cross protection. In: Harris KF (ed) Advances in disease vector research, vol 10. Springer-Verlag, New York, pp 237–257CrossRefGoogle Scholar
  114. Yeh S, Jan F, Chiang C et al (1992) Complete nucleotide-sequence and genetic organization of papaya ringspot virus-RNA. J Gen Virol 73:2531–2541CrossRefPubMedGoogle Scholar
  115. Yeh SD, Tripathi S, Bau HJ et al (2003) Identification and variability analysis of virus strain capable of breaking transgenic resistance of papaya conferred by coat protein gene of papaya ring spot virus. In: 7th International congress of plant molecular biology, Barcelona, Spain 23–28 June, p 367(Abst)Google Scholar
  116. Yogiraj V, Goyal PK, Chauhan CS (2014) Carica papaya Linn: an overview. Int J Herb Med 2(5):1–8Google Scholar
  117. Yu TA, Yeh SD, Cheng YH et al (2000) Efficient rooting for establishment of papaya plantlets by micropropagation. Plant Cell, Tissue Organ Cult 61:29–35CrossRefGoogle Scholar
  118. Zhu YJ, Agbayani R, Moore PH (2007) Ectopic expression of Dahlia merckii defensin DmAMP1 improves papaya resistance to Phytophthora palmivora by reducing pathogen. Planta 226:87–97CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Fredah Karambu Rimberia
    • 1
  • Francis Kweya Ombwara
    • 1
  • Naomi Nzilani Mumo
    • 1
  • Elijah Miinda Ateka
    • 1
  1. 1.Department of HorticultureJomo Kenyatta University of Agriculture and TechnologyNairobiKenya

Personalised recommendations