Advertisement

Cherry Breeding: Sweet Cherry (Prunus avium L.) and Sour Cherry (Prunus cerasus L.)

  • Luca Dondini
  • Stefano Lugli
  • Silviero Sansavini
Chapter

Abstract

This chapter describes the cherry’s origins, botanical classification (taxonomy) and domestication of the only two species cultivated for food and industrial processing: sweet and sour cherry. Cherry breeding programs worldwide have focused on trees, fruit quality traits and resistance to biotic and abiotic factors as well as on specific local characteristics. A detailed discussion of breeding techniques (crossbreeding, early selection, seedling screening and field assessment, embryo culture and mutagenesis) follows. A section is dedicated to sour cherry breeding, whose problems differ from those of the sweet cherry. We underline the importance of the knowledge and conservation of genetic resources for their use in genomic approaches. Then, discuss breeding strategies and the new traits that have been introduced in new genotypes through genomics. Germplasm biodiversity is analyzed in its phylogenetic context. Then, the molecular breeding approaches are extensively described with particular attention for gene mapping and the development of marker linked to monogenic and polygenic traits. A section is dedicated to the gametophytic incompatibility of the sweet cherry, with an updated summary of the research conducted to identify the 57 incompatibility groups (the cultivars for each of these are reported). Finally, we take into account other aspects related to breeding in respect to how functional genes affect some fruit characteristics, the strategies used after the cherry genome was sequenced and the potential of genetic engineering. The Appendix provides pomological profiles of 44 of the most important innovative cultivars, according to the descriptive standard of the Brooks and Olmo official lists with each accompanied by original photos to aid in their identification.

Keywords

Cherry taxonomy Biodiversity Fruit quality Functional genomic Incompatibility Molecular markers Resistance Sequencing 

Notes

Acknowledgements

The authors thank Mrs. Clementina Forconi for her valuable assistance.

References

  1. Apostol J (2011) Breeding of sweet and sour cherry in Hungary. Agris database. http://www.agrif.bg.ac.rs/publications/
  2. Badenes ML, Parfitt DE (1995) Phylogenetic relationships of cultivated Prunus species from an analysis of chloroplast DNA variation. Theor Appl Genet 90:1035CrossRefPubMedGoogle Scholar
  3. Bargioni G (1996) Sweet cherry scions: characteristics of the principal commercial cultivars, breeding objectives and methods. In: Webster WD, Looney NE (eds) Cherries: crop physiology, production and uses. CAB International, Wallingford, UK, pp 73–112Google Scholar
  4. Barraco G, Chatelet P, Balsemin E et al (2012) Cryopreservation of Prunus cerasus through vitrification and replacement of cold hardening with preculture on medium enriched with sucrose and/or glycerol. Sci Hortic 148:104–108CrossRefGoogle Scholar
  5. Bassi D, Sansavini S, Testolin R (2012) Il miglioramento genetico nelle piante da frutto: fondamenti e applicazioni. In: Sansavini S, Costa G, Gucci R et al (eds.) Arboricoltura generale. Pàtron Editore, pp 187–209Google Scholar
  6. Bors RH (2005) Dwarf sour cherry breeding at the University of Saskatchewan. Acta Hortic 667:135–140CrossRefGoogle Scholar
  7. Boskovic R, Tobutt KR (1996) Correlation of stylar ribonuclease zymograms with incompatibility alleles in sweet cherry. Euphy 90:245–250CrossRefGoogle Scholar
  8. Boskovic R, Tobutt KR (1998) Inheritance and linkage relationships of isoenzymes in two interspecific cherry progenies. Euphy 103:273–286CrossRefGoogle Scholar
  9. Brooks and Olmo (1997–2016) Register of fruit & nut varieties. ASHS Press; October 1, 1997, 3rd ed. and Register of new fruit and nut cultivars (List 34–48). HortSci (2016):51(6)Google Scholar
  10. Budan S, Stoian I (1996) Genetic resources in the Romanian sour cherry breeding. Acta Hortic 410:81–86CrossRefGoogle Scholar
  11. Cabrera A, Rosyara UR, De Franceschi P et al (2012) Rosaceae conserved orthologous sequences marker polymorphism in sweet cherry germplasm and construction of a SNP-based map. Tree Genet Genomes 8:1237–1247CrossRefGoogle Scholar
  12. Cachi AM, Wünsch A (2011) Characterization and mapping of non-S gametophyte self-compatibility in sweet cherry (Prunus avium L.). J Exp Bot 62:1847–1856CrossRefPubMedGoogle Scholar
  13. Cachi AM, Wünsch A (2014) S-genotyping of sweet cherry varieties from Spain and S-locus diversity in Europe. Euphy 197:229–236CrossRefGoogle Scholar
  14. Cachi AM, Hedhly A, Hormaza JI, Wünsch A (2014) Pollen tube growth in the self-compatible sweet cherry genotype, “Cristobalina”, is slowed down after self-pollination. Ann Appl Biol 164:73–84CrossRefGoogle Scholar
  15. Campoy JA, Lerigoleur-Balsemin E, Christmann H et al (2016) Genetic diversity, linkage disequilibrium, population structure and construction of a core collection of Prunus avium L. landraces and bred cultivars. BMC Plant Biol 16:49CrossRefPubMedPubMedCentralGoogle Scholar
  16. Castède S, Campoy JA, Quero-Garcia J et al (2014) Genetic determinism of phenological traits highly affected by climate change in Prunus avium: flowering date dissected into chilling and heat requirements. New Phytol 202:703–715CrossRefPubMedGoogle Scholar
  17. Chagné D, Crowhurst RN, Pindo M et al (2014) The draft genome sequence of European pear (Pyrus communis L “Bartlett”). PLoS ONE 9:E92644CrossRefPubMedPubMedCentralGoogle Scholar
  18. Choi C, Kappel F (2004) Inbreeding, coancestry, and founding clones of sweet cherries from North America. J Am Soc Hortic Sci 129(4):535–543Google Scholar
  19. Christensen JV (1972) Cracking in cherries. III. Determination of cracking susceptibility. Acta Agric Scand 22(2):128–136.  https://doi.org/10.1080/00015127209433471
  20. Clarke JB, Sargent DJ, Bošković RI et al (2009) A cherry map from the inter-specific cross Prunus avium ‘Napoleon’ × P. nipponica based on microsatellite, gene-specific and isoenzyme markers. Tree Genet Genomes 5:41–51CrossRefGoogle Scholar
  21. Daccord N, Celton JM, Linsmith G et al (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet 49:1099–1106CrossRefPubMedGoogle Scholar
  22. De Cuyper B, Sonneveld T, Tobutt KR (2005) Determining self-incompatibility genotypes in Belgian wild cherries. Mol Ecol 14:945–955CrossRefPubMedGoogle Scholar
  23. De Franceschi P, Stegmeir T, Cabrera A et al (2013) Cell number regulator genes in Prunus provide candidate genes for the control of fruit size in sweet and sour cherry. Mol Breeding 32:311–326CrossRefGoogle Scholar
  24. De Franceschi P, Dondini L, Iezzoni A (2014) Trovato un gene che controlla la dimensione delle ciliegie. Riv Frutti Spec Cilie 4:24–28Google Scholar
  25. De Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants. Springer, BerlinCrossRefGoogle Scholar
  26. Dirlewanger E, Capdeville G, Tauzin Y et al (2008) A sweet cherry (Prunus avium L.) linkage map and its comparison to other Prunus species. Acta Hortic 795:115–126CrossRefGoogle Scholar
  27. Dirlewanger E, Quero-García J, Le Dantec L et al (2012) Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity 109:280–292CrossRefPubMedPubMedCentralGoogle Scholar
  28. Druart P, Delporte F, Brazda M et al (1998) Genetic transformation of cherry trees. Acta Hortic 468:71–76CrossRefGoogle Scholar
  29. Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plant 40:427–433CrossRefGoogle Scholar
  30. Ercisli S, Agar G, Yildirim N et al (2011) Genetic diversity in wild sweet cherries (Prunus avium) in Turkey revealed by SSR markers. Genet Mol Res 10:1211–1219CrossRefPubMedGoogle Scholar
  31. Espley RV, Hellens RP, Putterill J et al (2007) Red colouration in apple fruit is due to the activity of the Myb transcription factor, MdMYB10. Plant J 49:414–427CrossRefPubMedPubMedCentralGoogle Scholar
  32. Faust M, Surányi D (1997) Origin and dissemination of cherry. In: Janick J (ed) Horticultural Reviews, vol 19, pp 55–102Google Scholar
  33. Fernández i Martí A, Athanson B, Koepke T et al (2012) Genetic diversity and relatedness of sweet cherry (Prunus avium L.) cultivars based on single nucleotide polymorphic (SNP) markers. Front Plant Sci 3:116.  https://doi.org/10.3389/fpls.2012.00116
  34. Fogle HW (1975) Cherries. In: Janick J, Moore JN (eds) Advances in fruit breeding. Purdue University Press, West Lafayette, IN, pp 348–366Google Scholar
  35. Guajardo V, Solís S, Sagredo B et al (2015) Construction of high density sweet cherry (Prunus avium L.) linkage maps using microsatellite markers and SNPs detected by genotyping-by-sequencing (GBS). PLoS ONE 10(5):e0127750CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gutièrrez-Pesce P, Taylor K, Muleo R, Rugini E (1998) Somatic embryogenesis and shoot regeneration from transgenic roots of cherry rootstock Colt (Prunus avium × P. pseudocerasus) mediated by pRi1855 T-DNA of Agrobacterium rhizogenes. Plant Cell Rep 17:574–580CrossRefGoogle Scholar
  37. Hauck NR, Yamane H, Tao R, Iezzoni AF (2006) Accumulation of nonfunctional S-haplotypes results in the breakdown of gametophytic self-incompatibility in tetraploid Prunus. Genet 172(2):1191–1198CrossRefGoogle Scholar
  38. Hedrick UP (1915) The cherries of New York. H. B. Lyon, Albany NYCrossRefGoogle Scholar
  39. Herrero M, Rodrigo J, Wünsch A (2017) Flowering, fruit set and development. In: Quero-Garcia J, Iezzoni A, Lang G, Pulawska J (eds) Cherries: botany, production and uses. CAB International, Boston, pp 14–35CrossRefGoogle Scholar
  40. Iezzoni AF (2005) Acquiring cherry germplasm from Central and Eastern Europe. HortScience 40:304–308Google Scholar
  41. Iezzoni AF, Wünsch A, Höfer M et al (2017) Biodiversity, germplasm resources and breeding methods. In: Quero-Garcia J, Iezzoni A, Pulawska J, Lang GA (eds) Cherries: botany, production and uses. CABI International, Boston, pp 36–59CrossRefGoogle Scholar
  42. Jajasankar S, Kappel F (2011) Recent advances in cherry breeding. In: Fruit, vegetables and cereal sciences and biotechnology. Global Science Book, pp 63–67Google Scholar
  43. Kappel F (2008) Breeding cherries in the New World. Acta Hortic 795:59–70CrossRefGoogle Scholar
  44. Kappel F, Shalberg PL (2008) Screening sweet cherry cultivars from the Pacific A.F. Research Center Summerland Breeding Program for resistance to brown rot (Monilina fruticosa). Can J Fruit Sci 88:747–752Google Scholar
  45. Kappel F, Granger A, Hrotko K, Schuster N (2012) Cherry. In: Badenes ML, Byrne DH (eds) Fruit breeding, Springer Science & Business Media, New York, pp 459–504Google Scholar
  46. Klagges C, Campoy JA, Quero-García J et al (2013) Construction and comparative analyses of highly dense linkage maps of two sweet cherry intra-specific progenies of commercial cultivars. PLoS ONE 8(1):e54743CrossRefPubMedPubMedCentralGoogle Scholar
  47. Krzesinska EZ, Azarenko AN (1992) Excised twig assay to evaluate cherry rootstocks for tolerance to Pseudomonas syringae pv. Syringae. Hortscience 27(2):153–155Google Scholar
  48. Lacis G, Rashal I, Ruisa S et al (2009) Assessment of genetic diversity of Latvian and Swedish sweet cherry (Prunus avium L.) genetic resources collections by using SSR (microsatellite) markers. Sci Hortic 121:451–457CrossRefGoogle Scholar
  49. Lewis D, Crowe LK (1954) Structure of the incompatibility gene. IV. Type of mutation in Prunus avium L. Heredity 8:357–363CrossRefGoogle Scholar
  50. Li MM, Cai YL, Qian ZQ, Zhao GF (2009) Genetic diversity and differentiation in Chinese sour cherry Prunus pseudocerasus Lindl., and its implications for conservation. Genet Resour Crop Evol 56:455–464CrossRefGoogle Scholar
  51. Marchese A, Boskovic RI, Caruso T et al (2007) A new self-compatibility haplotype in the sweet cherry “Kronio”, S5”, attributable to a pollen-part mutation in the SFB gene. J Exp Bot 58:4347–4356CrossRefPubMedGoogle Scholar
  52. Mariette S, Tavaud M, Arunyawat U et al (2010) Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus. BMC Genet 11:77CrossRefPubMedPubMedCentralGoogle Scholar
  53. Matthews P, Dow P (1978) Cherry breeding. In: John Innes Institute 69th Annual Report for 1978. John Innes Centre, Norwich, UK, p 38Google Scholar
  54. Matthews P, Dow P (1983) Cherries. In: John Innes Institute 27nd Annual Report for the two years 1981–1982. John Innes Centre, Norwich, UK, p 151Google Scholar
  55. Meland M, Kaiser C, Christensen JM (2014) Physical and chemical methods to avoid fruit cracking in cherry. Agrolife Sci J 3(1):177–183Google Scholar
  56. Mowrey BD, Werner DJ (1990) Phylogenetic relationships among species of Prunus as inferred by isozyme markers. Theor Appl Genet 80:129CrossRefPubMedGoogle Scholar
  57. Negri P, Magnanini E, Cantoni L et al (1998) Piante arboree transgeniche: prime esperienze sul trasferimento di geni per il controllo dell’habitus vegetativo. Riv Frutti 60(5):91–97Google Scholar
  58. Niino T, Tashiro K, Suzuki M et al (1997) Cryopreservation of in vitro grown shoot tips of cherry and sweet cherry by one-step vitrification. Sci Hortic 70:155–163CrossRefGoogle Scholar
  59. Ohta S, Katsuki T, Tanaka T et al (2005) Genetic variation in flowering cherries (Prunus subgenus Cerasus) characterized by SSR markers. Breed Sci 4:415–424CrossRefGoogle Scholar
  60. Olden EJ, Nybom N (1968) On the origin of Prunus cerasus L. Heredity 70:3321–3323Google Scholar
  61. Olmstead JW, Sebolt AM, Cabrera A et al (2008) Construction of an intra-specific sweet cherry (Prunus avium L.) genetic linkage map and synteny analysis with the Prunus reference map. Tree Genet Genomes 4:897–910CrossRefGoogle Scholar
  62. Peace C, Bassil N, Main D et al (2012) Development and evaluation of a genome-wide 6K SNP array for diploid sweet cherry and tetraploid sour cherry. PLoS One 7(12):e48305CrossRefPubMedPubMedCentralGoogle Scholar
  63. Pierantoni L, Dondini L, De Franceschi P et al (2010) Mapping of an anthocyanin-regulating myb transcription factor and its expression in red and green pear, Pyrus communis. Plant Phys Biochem 48:1020–1026CrossRefGoogle Scholar
  64. Poll L, Petersen M, Nielsen GS (2003) Influence of harvest year and harvest time on soluble solids, titrateable acid, anthocyanin content and aroma components in sour cherry (Prunus cerasus L. cv. “Stevnsbær”). Eur Food Res Technol 216:212–216Google Scholar
  65. Quero-García J, Campoy JA, Castède S et al (2017a) Breeding sweet cherries at INRA-Bordeaux: from conventional techniques to marker-assisted selection. Acta Hortic 1161:1–14.  https://doi.org/10.17660/ActaHortic.2017.1161.1CrossRefGoogle Scholar
  66. Quero-García J, Schuster N, López-Ortega G, Charlot G (2017b) Sweet cherry varieties and improvement. In: Quero García J, Iezzoni A, Pulawska J, Lang G (eds) Cherries: botany, production and uses. CAB International, Boston, pp 60–94CrossRefGoogle Scholar
  67. Rehder A (1974) The manual of cultivated trees and shrubs hardy in North America. Macmillian Publishing Co, New YorkGoogle Scholar
  68. Rosyara UR, Bink MCAM, van de Weg E et al (2013) Fruit size QTL identification and the prediction of parental QTL genotypes and breeding values in multiple pedigreed populations of sweet cherry. Mol Breed 32:875–887CrossRefGoogle Scholar
  69. Ru S, Main D, Evans K, Peace C (2015) Current applications, challenges, and perspectives of marker-assisted seedling selection in Rosaceae tree fruit breeding. Tree Genet Genomes 11:8CrossRefGoogle Scholar
  70. Ružić D, Vujović T, Cerović R (2014) Cryopreservation of cherry rootstock Gisela 5 using vitrification procedure. Hortic Sci (Prague) 41:55–63CrossRefGoogle Scholar
  71. Sansavini S, Lugli S (1996) Self fertility, compact spur habit and fruit quality in sweet cherry: preliminary findings of the University of Bologna breeding programs. Acta Hortic 410:51–64CrossRefGoogle Scholar
  72. Sansavini S, Lugli S (2008) Sweet cherry breeding programmes in Europe and Asia. Acta Hortic 795:167–182Google Scholar
  73. Schuster M (2012) Incompatible (S-) genotypes of sweet cherry cultivars (Prunus avium L.). Sci Hortic 148:59–73CrossRefGoogle Scholar
  74. Schuster M, Apostol J, Iezzoni AF et al (2017) Sour cherry varieties and improvement. In: Quero-Garcia J, Iezzoni A, Pulawska J, Lang GA (eds) Cherries: botany, production and uses. CABI, Boston, pp 95–116CrossRefGoogle Scholar
  75. Sebolt AM, Iezzoni AF, Tsukamoto T (2017) S-genotyping of cultivars and breeding selections of sour cherry (Prunus cerasus L.) in the Michigan State University sour cherry breeding program. Acta Hortic 1161:31–40CrossRefGoogle Scholar
  76. Serradilla MJ, López-Corrales M, Wünsch A (2014) Molecular discrimination of “Picota” sweet cherries using fruit tissue. Acta Hortic 1020:75–78.  https://doi.org/10.17660/ActaHortic.2014.1020.8CrossRefGoogle Scholar
  77. Shatnawi MA, Shibli R, Qrunfleh I et al (2007) In vitro propagation and cryopreservation of Prunus avium using vitrification and encapsulation dehydration methods. J Food Agric Environ 5:204–208Google Scholar
  78. Shirasawa K, Isuzugawa K, Ikenaga M et al (2017) The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding. DNA Res 24:499–508CrossRefPubMedPubMedCentralGoogle Scholar
  79. Shukov OS, Charitonova EN (1988) Sour cherry breeding. Agropromizdat, MoskowGoogle Scholar
  80. Shulaev V, Sargent DJ, Crowhurst RN et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 432:109–116CrossRefGoogle Scholar
  81. Song GQ, Sink KC (2006) Transformation of Montmorency sour cherry (Prunus cerasus L.) and Gisela 6 (P. cerasus × P. canescens) cherry rootstock mediated by Agrobacterium tumefaciens. Plant Cell Rep 25:117–123CrossRefPubMedGoogle Scholar
  82. Song GQ, Sink KC, Walworth AE et al (2013) Engineering cherry rootstocks with resistance to Prunus necrotic ring spot virus through RNAi-mediated silencing. Plant Biotechnol J 11:702–708CrossRefPubMedGoogle Scholar
  83. Sonneveld T, Tobutt KR, Vaughan SP, Robbins TP (2005) Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype-specific F-box gene. Plant Cell 17:37–51CrossRefPubMedPubMedCentralGoogle Scholar
  84. Sooriyapathirana SS, Khan A, Sebolt AM et al (2010) QTL analysis and candidate gene mapping for skin and flesh color in sweet cherry fruit (Prunus avium L.). Tree Genet Genomes 6:821–832CrossRefGoogle Scholar
  85. Stegmeir T, Schuster M, Sebolt A et al (2014) Cherry leaf spot resistance in cherry (Prunus) is associated with a quantitative trait locus on linkage group 4 inherited from P. canescens. Mol Breed 34:927–935CrossRefGoogle Scholar
  86. Struss D, Boritzki M, Glozer K, Southwick SM (2001) Detection of genetic diversity among populations of sweet cherry (Prunus avium L.) by AFLPs. J Hortic Sci Biotechnol 76(3):362–367CrossRefGoogle Scholar
  87. Szabó T, Inántsy F, Csiszár L (2008) results of sour cherry clonal selection carried out at the Research Station of Újfehértó. Acta Hortic 795:369–372.  https://doi.org/10.17660/ActaHortic.2008.795.54CrossRefGoogle Scholar
  88. Tanksley S, Young N, Paterson A, Bonierbale M (1989) RFLP mapping in plant breeding: new tools for an old science. Biotech 7:257–264Google Scholar
  89. Tao R, Iezzoni AF (2010) The S-RNase-based gametophytic self-incompatibility system in Prunus exhibits distinct genetic and molecular features. Sci Hortic 124:423–433CrossRefGoogle Scholar
  90. Tao R, Yamane H, Sugiura A et al (1999) Molecular typing of S-alleles through identification, characterization and cDNA cloning for S-RNases in sweet cherry. J Am Soc Hortic Sci 124:224–233Google Scholar
  91. Taranenko LI (2004) Plant breeding and testing sour cherry cultivars in conditions of Donbass. Sadovodsto I Vinogradarstvo 6:17–20Google Scholar
  92. Tavaud M, Zanetto A, David JL et al (2004) Genetic relationships between diploid and allotetraploid cherry species (Prunus avium, Prunus x gondouinii and Prunus cerasus). Heredity 93(6):631–638CrossRefPubMedGoogle Scholar
  93. Towill LE, Forsline PL (1999) Cryopreservation of sour cherry (Prunus cerasus L.) using a dormant vegetative bud method. CryoLett 20:215–222Google Scholar
  94. Van Buren R, Bryant D, Bushakra JM et al (2016) The genome of black raspberry (Rubus occidentalis). Plant J 87:535–547CrossRefGoogle Scholar
  95. Vaughan SP, Boskovic RI, Gisbert-Climent A et al (2008) Characterisation of novel S-alleles from cherry (Prunus avium L.). Tree Genet Genomes 4:531–541CrossRefGoogle Scholar
  96. Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus x domestica Borkh). Nat Genet 42(10):833–839CrossRefPubMedGoogle Scholar
  97. Venjaminov LN (1954) Selekcija vishni, slivy I aprikosa v uslovijakh spednej polosy SSR. Gosudarstvenneo Izdatelstvo Seleskokhozjajstvennoj Literatuyri, MoscowGoogle Scholar
  98. Verde I, Abbott AG, Scalabrin S et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494CrossRefPubMedGoogle Scholar
  99. Verde I, Jenkins JW, Dondini L et al (2017) The peach v20 release: high-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genomics 18:225CrossRefPubMedPubMedCentralGoogle Scholar
  100. Wang D, Karle R, Brettin TS, Iezzoni AF (1998) Genetic linkage map in sour cherry using RFLP markers. Theor Appl Genet 97:1217–1224CrossRefGoogle Scholar
  101. Wang D, Karle R, Iezzoni AF (2000) QTL analysis of flower and fruit traits in sour cherry. Theor Appl Genet 100:535–544CrossRefGoogle Scholar
  102. Webster AD (1996) The taxonomic classification of sweet and sour cherries and a brief history of their cultivation. In: Webster WD, Looney NE (eds) Cherries: crop physiology, production and uses. CAB International, Wallingford, UK, pp 3–24Google Scholar
  103. Wu J, Wang Z, Shi Z et al (2013) The genome of the pear (Pyrus bretschneideri Rehd). Genome Res 232:396–408CrossRefGoogle Scholar
  104. Wünsch A, Hormaza JI (2002) Molecular characterisation of sweet cherry (Prunus avium L.) genotypes using peach [Prunus persica (L.) Batsch] SSR sequences. Heredity 89:56–63CrossRefPubMedGoogle Scholar
  105. Wünsch A, Hormaza JI (2004) Molecular evaluation of genetic diversity and S-allele composition of local Spanish sweet cherry (Prunus avium L.) cultivars. Genet Res Crop Evol 51:635–641CrossRefGoogle Scholar
  106. Yamane H, Ikeda K, Ushijima K et al (2003) A pollen-expressed gene for a novel protein with an F-box motif that is very tightly linked to a gene for S-RNase in two species of cherry, Prunus cerasus and P. avium. Plant Cell Phys 44:764–769CrossRefGoogle Scholar
  107. Zhang G, Sebolt AM, Sooriyapathirana SS et al (2010) Fruit size QTL analysis of an F1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry. Tree Genet Genomes 6:25–36CrossRefGoogle Scholar
  108. Zhang Q, Chen W, Sun L et al (2012) The genome of Prunus mume. Nat Commun 3:1318CrossRefPubMedPubMedCentralGoogle Scholar
  109. Zhao D, Song GQ (2014) Rootstock-to-scion transfer of transgene-derived small interfering RNAs and their effect on virus resistance in nontransgenic sweet cherry. Plant Biotechnol J 12:1319–1328CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Luca Dondini
    • 1
  • Stefano Lugli
    • 1
  • Silviero Sansavini
    • 1
  1. 1.Dipartimento di Scienze e Tecnologie Agro-AlimentariUniversità di BolognaBolognaItaly

Personalised recommendations