Advertisement

Citrus Genetics and Breeding

  • José Cuenca
  • Andrés Garcia-Lor
  • Luis Navarro
  • Pablo Aleza
Chapter

Abstract

Citrus is one of the most important fruit crops worldwide. It is grown in more than 130 countries, mainly in tropical and subtropical areas. Sweet orange represents about 60% of total citrus production, being marketed as fresh fruit or as processed juice. Mandarins represent about 21% of total citrus fruit production and are intended for the fresh market. Conventional breeding in citrus by hybridization is hampered by its complex genetics and reproductive biology (apomixis, partial pollen and/or ovule sterility, cross- and self-incompatibility and high heterozigosity). In addition, citrus have a long juvenile period and usually take several years for hybrids to set fruit. Despite these limitations, many citrus breeding programs exploiting both diploidy and polyploidy as well as mutation breeding exist worldwide. From them, very important advances in releasing new varieties adapted to new market demands, as well as achievements in gaining knowledge of citrus genetics and genomics. The development of molecular markers, the availability of a reference genetic map, the advances in biotechnological tools and the complete genome sequence of several citrus species allow the acceleration of key studies such as germplasm characterization, marker-assisted selection, gene function discovery and variety improvement.

Keywords

Hybridization Mandarin Mapping MAS Mutation Orange Polyploidy Varieties 

References

  1. Abbott A (2015) Europe’s genetically edited plants stuck in legal limbo. Nature 528:319–320CrossRefPubMedGoogle Scholar
  2. Abdurakhmonov IY, Abdukarimov A (2008) Application of association mapping to understanding the genetic diversity of plant germplasm resources. Int J Plant Genom ID 574927.  https://doi.org/10.1155/2008/574927
  3. Agüero J, Ruiz-Ruiz S, Vives MC et al (2012) Development of viral vectors based on Citrus leaf blotch virus to express foreign proteins or analyze gene function in citrus plants. Mol PlantMicrobe Interact 25:1326–1337CrossRefGoogle Scholar
  4. Agüero J, Vives MC, Velázquez K et al (2013) Citrus leaf blotch virus invades meristematic regions in Nicotiana benthamiana and citrus. Mol Plant Pathol 14:610–616CrossRefPubMedGoogle Scholar
  5. Agüero J, Vives MC, Velázquez K et al (2014) Effectiveness of gene silencing induced by viral vectors based on citrus leaf blotch virus is different in Nicotiana benthamiana and citrus plants. Virol 460–461:154–164CrossRefGoogle Scholar
  6. Albrecht U, Bowman KD (2008) Gene expression in Citrus sinensis (L.) Osbeck following infection with the bacterial pathogen ‘Candidatus Liberibacter asiaticus’ causing Huanglongbing in Florida. Plant Sci 175(3):291–306CrossRefGoogle Scholar
  7. Aleza P (2015) Workshop on new mandarin varieties. Acta Hort 1065:193–199CrossRefGoogle Scholar
  8. Aleza P, Juárez J, Hernández M et al (2009a) Recovery and characterization of a Citrus clementina Hort. ex Tan. ‘Clemenules’ haploid plant selected to establish the reference whole Citrus genome sequence. BMC Plant Biol 9:110CrossRefPubMedPubMedCentralGoogle Scholar
  9. Aleza P, Juárez J, Ollitrault P, Navarro L (2009b) Production of tetraploid plants of non apomictic citrus genotypes. Plant Cell Rep 28(12):1837–1846CrossRefPubMedGoogle Scholar
  10. Aleza P, Cuenca J, Juárez J et al (2010a) ‘Garbi’ mandarin: a new late-maturing triploid hybrid. HortSci 45(1):139–141Google Scholar
  11. Aleza P, Juárez J, Cuenca J et al (2010b) Recovery of citrus triploid hybrids by embryo rescue and flow cytometry from 2x x 2x sexual hybridisation and its application to extensive breeding programs. Plant Cell Rep 29(9):1023–1034CrossRefPubMedGoogle Scholar
  12. Aleza P, Froelicher Y, Schwarz S et al (2011) Tetraploidization events by chromosome doubling of nucellar cells are frequent in apomictic citrus and are dependent on genotype and environment. Ann Bot 108(1):37–50CrossRefPubMedPubMedCentralGoogle Scholar
  13. Aleza P, Juárez J, Cuenca J et al (2012) Extensive citrus triploid hybrid production by 2x x 4x sexual hybridizations and parent-effect on the length of the juvenile phase. Plant Cell Rep 31(9):1723–1735CrossRefPubMedGoogle Scholar
  14. Aleza P, Cuenca J, Hernández M et al (2015) Genetic mapping of centromeres of the nine Citrus clementina chromosomes using half-tetrad analysis and recombination patterns in unreduced and haploid gametes. BMC Plant Biol 15:80.  https://doi.org/10.1186/s12870-015-0464-yCrossRefPubMedPubMedCentralGoogle Scholar
  15. Aleza P, Cuenca J, Juárez J et al (2016a) Inheritance in doubled-diploid clementine and comparative study with SDR unreduced gametes of diploid clementine. Plant Cell Rep 35(8):1573–1586CrossRefPubMedGoogle Scholar
  16. Aleza P, Garcia-Lor A, Juárez J, Navarro L (2016b) Recovery of citrus cybrid plants with diverse mitochondrial and chloroplastic genome combinations by protoplast fusion followed by in vitro shoot, root and embryo micrografting. Plant Cell, Tissue Organ Cult 126(2):205–217CrossRefGoogle Scholar
  17. Allario T, Brumos J, Colmenero-Flores J et al (2011) Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression. J Exp Bot 62(8):2507–2519CrossRefPubMedPubMedCentralGoogle Scholar
  18. Alós E, Roca M, Iglesias DJ et al (2008) An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis. Plant Phys 147:1300–1315CrossRefGoogle Scholar
  19. Alquézar B, Rodrigo MJ, Zacarías L (2008) Regulation of carotenoid biosynthesis during fruit maturation in the red-fleshed orange mutant Cara Cara. Phytochem 69:1997–2007CrossRefGoogle Scholar
  20. Alquézar B, Rodríguez A, de la Peña M, Peña L (2017) Genomic analysis of terpene synthase family and functional characterization of seven sesquiterpene synthases from Citrus sinensis. FrontPlant Sci 8:1481.  https://doi.org/10.3389/fpls.2017.01481CrossRefGoogle Scholar
  21. Ancillo G, Gadea J, Forment J et al (2007) Class prediction of closely related plant varieties using gene expression profiling. J Exp Bot 58:1927–1933CrossRefPubMedGoogle Scholar
  22. Aprile A, Federici C, Close T et al (2011) Expression of the H + -ATPase AHA10 proton pump is associated with citric acid accumulation in lemon juice sac cells. Funct Integr Genom 11:1–13CrossRefGoogle Scholar
  23. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9(33):208–218CrossRefGoogle Scholar
  24. Asins MJ, Juárez J, Pina JA et al (2002) Nulessín, una nueva clementina. Levante Agrícola 359:36–40Google Scholar
  25. Asins MJ, Bernet GP, Ruiz C et al (2004) QTL analysis of Citrus Tristeza Virus-citradia interaction. TheorApp Genet 108:603–611CrossRefGoogle Scholar
  26. Asins MJ, Fernandez-Ribacoba J, Bernet GP et al (2012) The position of the major QTL for Citrus Tristeza Virus resistance is conserved among Citrus grandis, C. aurantium and Poncirus trifoliata. Mol Breed 29:575–587CrossRefGoogle Scholar
  27. Balas FC, Osuna MD, Domínguez G et al (2014) Ex situ conservation of underutilised fruit tree species: establishment of a core collection for Ficus carica L. using microsatellite markers (SSRs). Tree Genet Genom 10:703–710Google Scholar
  28. Barkley NA (2003) Genetic diversity in a Citrus germplasm collection characterized with simple sequence repeat markers. Ph.D. dissertation, University of California, RiversideGoogle Scholar
  29. Barkley NA, Roose ML, Krueger RR, Federici CT (2006) Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theor App Genet 112:1519–1531CrossRefGoogle Scholar
  30. Barkley NA, Krueger RR, Federici CT, Roose ML (2009) What phylogeny and gene genealogy analyses reveal about homoplasy in citrus microsatellite alleles. Pl Syst Evol 282:71–86CrossRefGoogle Scholar
  31. Barrett HC, Rhodes AM (1976) A numerical taxonomic study of affinity relationships in cultivated Citrus and its close relatives. Syst Bot 1:105–136CrossRefGoogle Scholar
  32. Bassene JB, Froelicher Y, Navarro L et al (2011) Influence of mitochondria on gene expression in a citrus cybrid. Plant Cell Rep 30(6):1077–1085CrossRefPubMedGoogle Scholar
  33. Bastiaanssen HJM, Van Den Berg PMMM, Lindhout P et al (1998) Postmeiotic restitution in 2n-egg formation of diploid potato. Hered 81:20–27CrossRefGoogle Scholar
  34. Bausher MG, Singh ND, Lee SB et al (2006) The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var ‘Ridge Pineapple’: organization and phylogenetic relationships to other angiosperms. BMC Plant Biol 6:21CrossRefPubMedPubMedCentralGoogle Scholar
  35. Belaj A, Dominguez-García MC, Atienza GC (2012) Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genet Genomes 8:365–378CrossRefGoogle Scholar
  36. Bermejo A, Pardo J, Cano A (2012) Murcott seedless: influence of gamma irradiation on citrus production and fruit quality. Span J Agric Res 10:768–777.  https://doi.org/10.5424/sjar/2012103-460-11CrossRefGoogle Scholar
  37. Bernet GP, Gorris MT, Carbonell EA et al (2008) Citrus tristeza virus resistance in a core collection of sour orange based on a diversity study of three germplasm collections using QTL-linked markers. Plant Breed 127:398–406CrossRefGoogle Scholar
  38. Bové JM (2014) Huanglongbing or yellow shoot, a disease of Gondwanan origin: will it destroy citrus worldwide? Phytoparas 42(5):579–583CrossRefGoogle Scholar
  39. Bowman KD, McCollum G, Albrecht U (2016) Performance of ‘Valencia’ orange (Citrus sinensis [L.] Osbeck) on 17 rootstocks in a trial severely affected by huanglongbing. Sci Hort 201:355–361CrossRefGoogle Scholar
  40. Breseghello F, Sorrells M (2006) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46(3):1323–1330CrossRefGoogle Scholar
  41. Bretagnolle F, Thompson JD (1995) Tansley Review no-78 - Gametes with the somatic chromosome-number - mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol 129:1–22CrossRefGoogle Scholar
  42. Bretó MP, Ruiz C, Pina JA, Asíns MJ (2001) The diversification of Citrus clementina Hort. ex Tan., a vegetatively propagated crop species. Mol Phylog Evol 21:285–293CrossRefGoogle Scholar
  43. Brown AHD (1989) Core collections: a practical approach to genetic resources management. Genome 31:818–824CrossRefGoogle Scholar
  44. Butelli E, Licciardello C, Zhang Y et al (2012) Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24(3):1242–1255CrossRefPubMedPubMedCentralGoogle Scholar
  45. Butelli E, Garcia-Lor A, Licciardello C et al (2017) Changes in anthocyanin production during domestication of citrus. Plant Physiol 173:2225–2242CrossRefPubMedPubMedCentralGoogle Scholar
  46. Cai X, Xu SS (2007) Meiosis-driven genome variation in plants. Curr Genom 8:151–161CrossRefGoogle Scholar
  47. Cameron JW, Bernett RH (1978) Use of sexual tetraploid seed parents for production of triploid citrus hybrids. HortSci 13:167–169Google Scholar
  48. Cameron JW, Frost HB (1968) Genetics, breeding and nucellar embryony. In: ReutherW, Batcherlor LD, Webber HJ (eds) The Citrus Industry, vol II. University of California Press, Berkeley, pp 325–370Google Scholar
  49. Cao H, Biswas MK, Lü Y et al (2011) Doubled haploid callus lines of Valencia sweet orange recovered from anther culture. Plant Cell Tiss Organ Cult 104:415CrossRefGoogle Scholar
  50. Cercos M, Soler G, Iglesias DJ et al (2006) Global analysis of gene expression during development and ripening of citrus fruit flesh. A proposed mechanism for citric acid utilization. Plant Mol Biol 62:513–527.  https://doi.org/10.1007/s11103-006-9037-7CrossRefPubMedGoogle Scholar
  51. Cervera M, Navarro A, Navarro L, Peña L (2008) Production of transgenic adult plants from Clementine mandarin by enhancing cell competence for transformation and regeneration. Tree Phys 28:55–66CrossRefGoogle Scholar
  52. Chen C, Gmitter FG (2013) Mining of haplotype-based expressed sequence tag single nucleotide polymorphismsin in citrus. BMC Genom 14:746CrossRefGoogle Scholar
  53. Chen C, Lyon MT, O’Malley D et al (2008) Origin and frequency of 2n gametes in Citrus sinensis x Poncirus trifoliata and their reciprocal crosses. Plant Sci 174:1–8CrossRefGoogle Scholar
  54. Cheng FS, Roose ML (1995) Origin and inheritance of dwarfing by the citrus rootstock Poncirus trifoliate`Flying Dragon’. J Am Soc Hort Sci 120(2):286–291Google Scholar
  55. Cheng Y, de Vicente MC, Meng H et al (2005) A set of primers for analyzing chloroplast DNA diversity in citrus and related genera. Tree Phys 25:661–672CrossRefGoogle Scholar
  56. Chin H, Roberts E (1980) Recalcitrant crop seeds. Tropical Press SDN, BHD, Kuala LumpurGoogle Scholar
  57. Coletta Filho HD, Machado MA, Targon MLPN et al (1998) Analysis of the genetic diversity among mandarins (Citrus spp.) using RAPD markers. Euphy 102:133–139CrossRefGoogle Scholar
  58. Cuenca J, Aleza P, Juárez J et al (2010) ‘Safor’ mandarin: a new citrus midlate triploid hybrid. HortSci 45:977–980Google Scholar
  59. Cuenca J, Froelicher Y, Aleza P et al (2011) Multilocus half-tetrad analysis and centromere mapping in citrus: evidence of SDR mechanism for 2n megagametophyte production and partial chiasma interference in mandarin cv. ‘Fortune’. Hered 107:462–470CrossRefGoogle Scholar
  60. Cuenca J, Aleza P, Vicent A et al (2013a) Genetically based location from triploid populations and gene ontology of a 3.3-Mb genome region linked to Alternaria brown spot resistance in citrus reveal clusters of resistance genes. PLoS ONE 8:e76755CrossRefPubMedPubMedCentralGoogle Scholar
  61. Cuenca J, Aleza P, Navarro L, Ollitrault P (2013b) Assignment of SNP allelic configuration in polyploids using competitive allele-specific PCR: application to citrus triploid progeny. Ann Bot 111(4):731–742CrossRefPubMedPubMedCentralGoogle Scholar
  62. Cuenca J, Aleza P, Juárez J et al (2015) Maximum-likelihood method identifies meiotic restitution mechanism from heterozygosity transmission of centromeric loci: application in citrus. SciRep 5:9897Google Scholar
  63. Cuenca J, Aleza P, Garcia-Lor A et al (2016) Fine mapping for identification of citrus Alternaria brown spot candidate resistance genes and development of new SNP markers for marker-assisted selection. Front Plant Sci 7:1948PubMedPubMedCentralGoogle Scholar
  64. Curk F, Ancillo G, Garcia-Lor A et al (2014) Next generation haplotyping to decipher nuclear genomic interspecific admixture in Citrus species: analysis of chromosome 2. BMC Genet 15:152CrossRefPubMedPubMedCentralGoogle Scholar
  65. Curk F, Ancillo G, Ollitrault F et al (2015) Nuclear species-diagnostic SNP markers mined from 454 amplicon sequencing reveal admixture genomic structure of modern citrus varieties. PLoS ONE 10:e0125628CrossRefPubMedPubMedCentralGoogle Scholar
  66. Curk F, Ollitrault F, Garcia-Lor A et al (2016) Phylogenetic origin of limes and lemons revealed by cytoplasmic and nuclear markers. Ann Bot 117(4):565–583CrossRefPubMedPubMedCentralGoogle Scholar
  67. Curtolo M, Cristofani-Yali M, Gazaffi R et al (2017) QTL mapping for fruit quality in Citrus using DArTseq markers. BMC Genom 18:289CrossRefGoogle Scholar
  68. Cyranoski D (2015) CRISPR tweak may help gene-edited crops bypass biosafety regulation. Nature News.  https://doi.org/10.1038/nature.2015.18590CrossRefGoogle Scholar
  69. Dalkilic Z, Timmer LW, Gmitter FG (2005) Linkage of an Alternaria disease resistance gene in mandarin hybrids with RAPD fragments. J Am Soc Hort Sci 130(2):191–195Google Scholar
  70. Dambier D, Benyahia H, Pensabene-Bellavia G et al (2011) Somatic hybridization for citrus rootstock breeding: an effective tool to solve some important issues of the Mediterranean citrus industry. Plant Cell Rep 30(5):883–900CrossRefPubMedGoogle Scholar
  71. Davies FS, Albrigo LG (1994) Citrus. Crops production science in horticulture, CAB International, UKGoogle Scholar
  72. de Moraes A, dos Santos Soares Filho W, Guerra M (2007) Karyotype diversity and the origin of grapefruit. Chrom Res 1:115–121Google Scholar
  73. de Souza JD, de Andrade Silva EM, Coelho Filho MA et al (2017) Different adaptation strategies of two citrus scion/rootstock combinations in response to drought stress. PLoS ONE 12(5):e0177993CrossRefGoogle Scholar
  74. De Storme N, Geelen D (2013) Sexual polyploidization in plants—cytological mechanisms and molecular regulation. New Phytol 198:670–684CrossRefPubMedPubMedCentralGoogle Scholar
  75. Deng Z, Huang S, Xiao S, Gmitter FG (1997) Development and characterization of SCAR markers linked to the Citrus Tristeza Virus resistance gene from Poncirus trifoliata. Genome 40:697–704CrossRefPubMedGoogle Scholar
  76. Duran-Vila N (1995) Cryopreservation of germplasm of citrus. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Cryopreservation of plant germplasm I, Springer, Berlin, pp 70–96Google Scholar
  77. Duran-Vila N, Janse J, Foissac X et al (2014) Addressing the threat of Huanglongbing in the Mediterranean region: a challenge to save the citrus industry. J Plant Pathol 96:S4.3-S4.8Google Scholar
  78. Dutt M, Barthe G, Irey M, Grosser J (2015) Transgenic citrus expressing an Arabidopsis NPR1 gene exhibit enhanced resistance against Huanglongbing (HLB; citrus greening). PLoS ONE 10(9):e0137134.  https://doi.org/10.1371/journal.pone.0137134CrossRefPubMedPubMedCentralGoogle Scholar
  79. Ellwood SR, D’Souza NK, Kamphuis LG et al (2006) SSR analysis of the Medicago truncatula SARDI core collection reveals substantial diversity and unusual genotype dispersal throughout the Mediterranean basin. Theor Appl Genet 112:977–983CrossRefPubMedGoogle Scholar
  80. Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple Genotyping-by-Sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379CrossRefPubMedPubMedCentralGoogle Scholar
  81. Endo T, Shimada T, Fujii H et al (2005) Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgen Res 14:703–712CrossRefGoogle Scholar
  82. Engelmann F (1997) In vitro conservation methods. In: Ford-Lloyd BV, Newburry JH, Callow JA (eds) Biotechnology and plant genetic resources: conservation and use. CABI, Wallingford, UK, pp 119–162Google Scholar
  83. Escribano P, Viruel MA, Hormaza JI (2008) Comparison of different methods to construct a core germplasm collection in woody perennial species with simple sequence repeat markers. A case study in cherimoya (Annona cherimola, Annonaceae), an underutilised subtropical fruit tree species. Ann AppBiol 153:25–32Google Scholar
  84. Esen A, Soost RK (1971) Unexpected triploids in Citrus: their origin, identification, and possible use. J Hered 62(6):329–333CrossRefGoogle Scholar
  85. Esen A, Soost RK (1973) Precocious development and germination of spontaneous triploid seeds in Citrus. J Hered 64(3):147–154CrossRefGoogle Scholar
  86. Esen A, Soost RK, Geraci G (1979) Genetic evidence for the origin of diploid megagametophytes in Citrus. J Hered 70:5–8CrossRefGoogle Scholar
  87. Esselink GD, Nybom H, Vosman B (2004) Assignment of allelic configuration in polyploids using the MAC-PR (microsatellite DNA allele counting-peak ratios) method. Theor Appl Genet 109:402–408CrossRefPubMedGoogle Scholar
  88. Fajardo DS, La Bonte DR, Jarret RL (2002) Identifying and selecting for genetic diversity in Papua New Guinea sweetpotato Ipomoea batatas (L.) Lam. germplasm collected as botanical seed. Genet Res Crop Evol 49(5): 463–470Google Scholar
  89. Fang D, Roose ML, Krueger RR, Federici CT (1997) Fingerprinting trifoliate orange germ plasm accessions with isozymes, RFLPs, and inter-simple sequence repeat markers. Theor Appl Genet 95:211–219CrossRefGoogle Scholar
  90. FAO (2017) www.faostat.org (accessed March 07 2018)
  91. Febres V, Fisher L, Khalaf A, Moore GA (2011) Citrus transformation: challenges and prospects. In: María Alvarez (ed) InTech.  https://doi.org/10.5772/24526
  92. Federici CT, Fang DQ, Scora RW, Roose ML (1998) Phylogenetic relationships within the genus Citrus (Rutaceae) and related genera as revealed by RFLP and RAPD analysis. Theor Appl Genet 94:812–822CrossRefGoogle Scholar
  93. Folimonov AS, Folimonova SY, Bar-Joseph M, Dawson WO (2007) A stable RNA virus-based vector for citrus trees. Virology 368:205–216.  https://doi.org/10.1016/j.virol.(2007).06.038CrossRefPubMedGoogle Scholar
  94. Forment J, Gadea J, Huerta L et al (2005) Development of a citrus genome-wide EST collection and cDNA microarray as resources for genomic studies. Plant Mol Biol 57:375–391CrossRefPubMedGoogle Scholar
  95. Forner JB, Forner-Giner MA, Alcaide A (2003) Forner-Alcaide 5 and Forner-Alcaide 13: two new citrus rootstocks released in Spain. HortSci 38(4):629Google Scholar
  96. Forner-Giner MA, Primo-Millo E, Forner JB (2009a) Performance of Forner-Alcaide 5 and Forner-Alcaide 13, hybrids of Cleopatra mandarin × Poncirus trifoliata, as salinity-tolerant citrus rootstocks. J Am Pomolog Soc 63(2):72–80Google Scholar
  97. Forner-Giner MA, Llosá MJ, Carrasco J et al (2009b) Differential gene expression analysis provides new insights into the molecular basis of iron deficiency stress response in the citrus rootstock Poncirus trifoliata (L.) Raf. J Exp Bot 61(2):483–490CrossRefPubMedPubMedCentralGoogle Scholar
  98. Forner-Giner MA, Legaz F, Primo-Millo E, Forner JB (2011) Nutritional responses of citrus rootstocks to salinity: performance of the new hybrids, Forner-Alcaide 5 and Forner-Alcaide 13. J Plant Nutr 34:1–16.  https://doi.org/10.1080/01904167.2011.585202CrossRefGoogle Scholar
  99. Forner-Giner MA, Rodriguez-Gamir J, Martinez-Alcantara B et al (2014) Performance of Navel orange trees grafted onto two new dwarfing rootstocks (Forner-Alcaide 517 and Forner-Alcaide 418). Sci Hort 179:376–387CrossRefGoogle Scholar
  100. Froelicher Y, Bassene J, Jedidi-Neji E et al (2007) Induced parthenogenesis in mandarin for haploid production: induction procedures and genetic analysis of plantlets. Plant Cell Rep 26:937–944CrossRefPubMedGoogle Scholar
  101. Froelicher Y, Dambier D, Bassene JB et al (2008) Characterization of microsatellite markers in mandarin orange (Citrus reticulata Blanco). Mol EcolRes 8:119–122Google Scholar
  102. Froelicher Y, Mouhaya W, Bassene JB et al (2011) New universal mitochondrial PCR markers reveal new information on maternal citrus phylogeny. Tree Genet Genom 7:49–61CrossRefGoogle Scholar
  103. Frost HB, Soost RK (1968) Seed reproduction, development of gametes and embryos. In: Reuther W, Batchelor LD, Webber HJ (eds) Thecitrus industry, vol 2. University of California Press, Berkeley, USA, pp 290–324Google Scholar
  104. Gallais A (2003) Quantitative genetics and breeding methods in autopolyploids plants, 2nd edn. INRA, FranceGoogle Scholar
  105. Gandía M, Conesa A, Ancillo G et al (2007) Transcriptional response of Citrus aurantifolia to infection by Citrus tristeza virus. Virol 367:298–306CrossRefGoogle Scholar
  106. Garcia-Lor A, Curk F, Snoussi-Trifa H et al (2012) A nuclear phylogenetic analysis:SNPs, indels and SSRs deliver new insights into the relationships in the ‘true citrus fruit trees’ group (Citrinae, Rutaceae) and the origin of cultivated species. Ann Bot 111:1–19CrossRefPubMedPubMedCentralGoogle Scholar
  107. Garcia-Lor A, Curk F, Snoussi-Trifa H et al (2013) A nuclear phylogenetic analysis; SNPs, indels and SSRs deliver new insights into the relationships in the “true citrus fruit trees” group (Citrinae, Rutaceae) and the origin of cultivated species. Ann Bot 111:1–19Google Scholar
  108. Garcia-Lor A, Luro F, Ollitrault P, Navarro L (2015) Genetic diversity and population structure analysis of mandarin germplasm by nuclear, chloroplastic and mitochondrial markers. Tree Genet Genom 11(6):e123CrossRefGoogle Scholar
  109. Garcia-Lor A, Luro F, Ollitrault P, Navarro L (2017) Comparative analysis of core collection sampling methods for mandarin germplasm based on molecular and phenotypic data. Ann Appl Biol 171:327–339CrossRefGoogle Scholar
  110. Geraci G, Esen A, Soost RK (1975) Triploid progenies from 2x x 2x crosses of Citrus cultivars. J Hered 66:177–178CrossRefGoogle Scholar
  111. Germana MA, Chiancone B (2001) Gynogenetic haploids of Citrus after in vitro pollination with triploid pollen grains. Plant Cell Tiss Org Cult 66:59–66CrossRefGoogle Scholar
  112. Germana MA, Aleza P, Carrera E et al (2013) Cytological and molecular characterization of three gametoclones of Citrus clementina. BMC Plant Biol 13:129CrossRefPubMedPubMedCentralGoogle Scholar
  113. Ghislain M, Zhang D, Fajardo D et al (1999) Marker-assisted sampling of the cultivated Andean potato Solanum phureja collection using RAPD markers. Genet Res Crop Evol 46(6):547–555CrossRefGoogle Scholar
  114. Gimeno J, Gadea J, Forment J et al (2009) Shared and novel molecular responses of mandarin to drought. Plant Mol Biol 70(4):403–420CrossRefPubMedGoogle Scholar
  115. Gmitter Jr FG, Grosser JW, Moore GA (1992) Citrus. In: Hammerschlag F, Litz RL (eds) Biotechnology of perennial crops. CAB Intl., Wallingford, Oxon, UK, pp 335–369Google Scholar
  116. Gmitter FG, Xiao SY, Huang S et al (1996) A localized linkage map of the Citrus tristeza virus resistance gene region. Theor Appl Genet 92:688–695CrossRefPubMedGoogle Scholar
  117. Gois IB, Borém A, Cristofani-Yaly M et al (2016) Genome wide selection in Citrus breeding. Genet Mol Res 15(4).  https://doi.org/10.4238/gmr15048863
  118. González-Arnao M, Juárez J, Ortega C (2003) Cryopreservation of ovules and somatic embryos of citrus using the encapsulation-dehydration technique. Cryo Lett 24:85–94Google Scholar
  119. Green RM, Vardi A, Galun E (1986) The plastome of Citrus. Physical map, variation among Citrus cultivars and species and comparison with related genera. Theor Appl Genet 72:170–177CrossRefPubMedGoogle Scholar
  120. Grosser JW, An H, Calovic M et al (2010) Production of new allotetraploid and autotetraploid citrus breeding parents: focus on zipperskin mandarins. HortSci 45(8):1160–1163Google Scholar
  121. Grosser JW, Gmitter FG Jr (2005) ‘Thinking outside the cell’: Applications of somatic hybridization and cybridization in crop improvement, with citrus as a model. 2004 SIVB Congress Symposium Proceedings. In Vitro Cell Dev Biol Plant 41:220–225Google Scholar
  122. Grosser JW, Gmitter FG Jr, Dutt M et al (2015) Highlights of the University of Florida, citrus research and education center’s comprehensive citrus breeding and genetics program. Acta Hort 1065:405–413CrossRefGoogle Scholar
  123. Gulsen O, Roose ML (2001) Chloroplast and nuclear genome analysis of the parentage of lemons. J Amer Soc Hort Sci 126:210–215Google Scholar
  124. Gulsen O, Uzun A, Canan I et al (2010) A new citrus linkage map based on SRAP, SSR, ISSR, POGP, RGA and RAPD markers. Euphy 173(2):265–277CrossRefGoogle Scholar
  125. Hajeri S, Killiny N, El-Mohtar C et al (2014) Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing). J Biotech 176:42–49CrossRefGoogle Scholar
  126. Hao CY, Zhang XY, Wang LF et al (2006) Genetic diversity and core collection evaluations in common wheat germplasm from the Northwestern Spring Wheat Region in China. Mol Breed 17:69–77CrossRefGoogle Scholar
  127. Hao G, Stover E, Gupta G (2016) Overexpression of a modified plant thionin enhances disease resistance to Citrus canker and Huanglongbing (HLB). Front Plant Sci 7:1078.  https://doi.org/10.3389/fpls.2016.01078CrossRefPubMedPubMedCentralGoogle Scholar
  128. Henrique FH, Zacarías L, Rodrigo MJ, Latado RR (2016) Sanguinea de mombuca: a novel red-fleshed brazilian orange accumulating lycopene and other colorless carotenes. In: Proceedings of 13th International Citrus Congress Foz do Iguaçu 104Google Scholar
  129. Hensz RA (1971) ‘Star Ruby’, a new deep-red-fleshed grapefruit variety with distinct tree characteristics. J Rio Grande Vall Hort Soc 25:54–58Google Scholar
  130. Herrero R, Asins MJ, Carbonell EA, Navarro L (1996) Genetic diversity in the orange subfamily Aurantioideae. I. Intraspecifies and intragenus genetic variability. Theor Appl Genet 92:599–609CrossRefPubMedGoogle Scholar
  131. Hidaka T, Omura M, Ugaki M et al (1990) Agrobacterium-mediated transformation and regeneration of Citrus spp. from suspension cells. Japan J Breeding 40:199–207Google Scholar
  132. Holdsworth WL, Gazave E, Cheng P et al (2017) A community resource for exploring and utilizing genetic diversity in the USDA pea single plant plus collection. Hort Res 4:17017CrossRefGoogle Scholar
  133. Hu J, Zhu J, Xu H (2000) Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theor Appl Genet 101:264–268CrossRefGoogle Scholar
  134. Huerta L, Forment J, Gadea J et al (2008) Gene expression analysis in citrus reveals the role of gibberellins on photosynthesis and stress. Plant, Cell Environ 31:1620–1633CrossRefGoogle Scholar
  135. IPGRI (1999) Descriptors for Citrus. International Plant Genetic Resources Institute, Rome, ItalyGoogle Scholar
  136. Jedidi NE, Kamiri M, Poullet T et al (2015) Efficient haploid production on ‘Wilking’ mandarin by induced gynogenesis. Acta Hort 1065:60Google Scholar
  137. Jenderek MM, Reed BM (2017) Cryopreserved storage of clonal germplasm in the USDA National plant germplasm system. Vitro Cell Dev Biol Plant 53(4):299–308CrossRefGoogle Scholar
  138. Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE 9(4):e93806CrossRefPubMedPubMedCentralGoogle Scholar
  139. Jia H, Zhang Y, Orbović V et al (2017) Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to Citrus canker. Plant Biotech J 15(7):817–823CrossRefGoogle Scholar
  140. Jiao WB, Huang D, Xing F et al (2013) Genome-wide characterization and expression analysis of genetic variants in sweet orange. Plant J 75:954–964CrossRefPubMedGoogle Scholar
  141. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821CrossRefGoogle Scholar
  142. Kepiro JL, Roose ML (2010) AFLP markers closely linked to a major gene essential for nucellar embryony (apomixis) in Citrus maxima x Poncirus trifoliata. Tree Genet Genome 6:1–11CrossRefGoogle Scholar
  143. Kijas JMH, Thomas MR, Fowler JCS, Roose ML (1997) Integration of trinucleotide microsatellites into a linkage map of Citrus. Theor Appl Genet 94:701–706CrossRefGoogle Scholar
  144. Kobayashi S, Ieda I, Nakatani M (1981) Proceedings of 4th International Citrus Congress 1981. Role of the primordium cell in nucellar embryogenesis in citrus. International Society of Citriculture, Tokyo, pp 44–48Google Scholar
  145. Kobayashi S, Uchimiya H (1989) Expression and integration of a foreign gene in orange (Citrus sinensis Osb.) protoplasts by direct DNA transfer. Japan J Genet 64(2):91–97CrossRefGoogle Scholar
  146. Krueger RR, Bender GS (2015) Screening a core collection of citrus genetic resources for resistance to Fusarium solani. Acta Hort 1065:155–163CrossRefGoogle Scholar
  147. Krueger RR, Navarro L (2007) Citrus germplasm resources. In: Khan IA (ed) Citrus genetics, breeding and biotechnology. CAB International, Wallingford, UK, pp 45–140CrossRefGoogle Scholar
  148. Krug C (1943) Chromosome number in the subfamily Aurantioideae with special reference to the genus Citrus. Bot Gaz 104:602–611CrossRefGoogle Scholar
  149. Lapin WK (1937) Investigation on polyploidy in Citrus. USSR All Union Sci Res Inst 1(4):1–68Google Scholar
  150. Legua P, Bellver R, Forner JB, Forner-Giner MA (2011) Trifoliata hybrids rootstocks for ‘Lane Late’ navel orange in Spain. Sci Agric 68(5):548–553CrossRefGoogle Scholar
  151. Lewis CM (2012) Knight J (2012) Introduction to genetic association studies. Cold Spring Harb Protoc 3:297–306.  https://doi.org/10.1101/pdb.top068163CrossRefGoogle Scholar
  152. Li X, Xie R, Lu Z, Zhou Z (2010) The origin of cultivated Citrus as inferred from internal transcribed spacer and chloroplast DNA sequence and amplified fragment length polymorphism fingerprints. J Am Soc Hort Sci 135:341–350Google Scholar
  153. Liang G, Xiong G, Guo Q et al (2007) AFLP analysis and the taxonomy of Citrus. Acta Hort 760:137–142CrossRefGoogle Scholar
  154. Ling P, Duncan LW, Deng Z et al (2000) Inheritance of citrus nematode resistance and its linkage with molecular markers. Theor Appl Genet 100:1010–1017CrossRefGoogle Scholar
  155. Liu YZ, Deng XX (2007) Citrus breeding and genetics in China. Asian Australas J Plant Sci Biotech 1:23–28Google Scholar
  156. Lliso I, Forner JB, Talon M (2004) The dwarfing mechanism of the citrus rootstocks F&A 418 and #23 is related to the competition between vegetative and reproductive development. Tree Phys 24:225–232CrossRefGoogle Scholar
  157. Long JM, Liu Z, Wu XM et al (2016) Genome-scale mRNA and small RNA transcriptomic insights into initiation of citrus apomixis, J Exp Bot 67(19):5743–5756Google Scholar
  158. Lopes SA, Frare GF, Camargo LEA et al (2010) Liberibacters associated with orange jasmine in Brazil: Incidence in urban areas and relatedness to citrus liberibacters. Plant Pathol 59:1044–1053.  https://doi.org/10.1111/j.1365-3059.2010.02349.x
  159. López-García A, Terol J, Tadeo FR et al (2015) Three new cultivars of Clementine: ‘Clemenverd’, ‘Nero’ and ‘Neufina’. Acta Hort 1065:239–244CrossRefGoogle Scholar
  160. Lotfy S, Luro F, Carreel F et al (2003) Application of cleaved amplified polymorphic sequence method for analysis of cytoplasmic genome among Aurantioideae intergeneric somatic hybrids. J Am Soc Hort Sci 128:225–230Google Scholar
  161. Louzada ES, Grosser JW, Gmitter FG Jr (1993) Intergeneric somatic hybridization of sexually incompatible parents: Citrus sinensis and Atalantia ceylanica. Plant Cell Reports 12:687–690Google Scholar
  162. Luro F, Loireux M, Laigret F et al (1994) Genetic mapping of an intergeneric citrus hybrid using molecular markers. Fruits 49:404–408Google Scholar
  163. Luro F, Rist D, Ollitrault P (2001) Evaluation of genetic relationships in Citrus genus by means of sequence tagged microsatellites. Acta Hort 546:237–242CrossRefGoogle Scholar
  164. Luro F, Maddy F, Jacquemond C et al (2004) Identification and evaluation of diplogyny in clementine (Citrus clementina) for use in breeding. Acta Hort 663:841–847CrossRefGoogle Scholar
  165. Luro F, Costantino G, Terol J et al (2008) Transferability of the EST-SSRs developed on Nules clementine (Citrus clementina Hort ex Tan) to other Citrus species and their effectiveness for genetic mapping. BMC Genom 9:287CrossRefGoogle Scholar
  166. Mabberley DJ (1997) A classification for edible Citrus. Telopea 7:167–172CrossRefGoogle Scholar
  167. Mafra V, Kubo KS, Alves-Ferreira M et al (2012) Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions. PLoS ONE 7(2):e31263CrossRefPubMedPubMedCentralGoogle Scholar
  168. Marita JM, Rodriguez JM, Nienhuis J (2000) Development of an algorithm identifying maximally diverse core collections. Genet Res Crop Evol 47(5):515–526CrossRefGoogle Scholar
  169. Martinelli F, Dolan D, Fileccia V et al (2016) Molecular responses to small regulating molecules against Huanglongbing disease. PLoS ONE 11:e0159610CrossRefPubMedPubMedCentralGoogle Scholar
  170. Martinez-Godoy MA, Mauri N, Juarez J et al (2008) A genome-wide 20 K citrus microarray for gene expression analysis. BMC Genom 9(1):318CrossRefGoogle Scholar
  171. McCollum TG, Hilf ME, Irey M et al (2016) Susceptibility of sixteen citrus genotypes to ‘Candidatus Liberibacter asiaticus’. Plant Dis 100(6):1080–1086CrossRefGoogle Scholar
  172. McKhann HI, Camilleri C, Bérard A et al (2004) Nested core collections maximizing genetic diversity in Arabidopsis thaliana. Plant J 38:193–202CrossRefPubMedGoogle Scholar
  173. Minamikawa MF, Nonaka K, Kaminuma E et al (2017) Genome-wide association study and genomic prediction in citrus: potential of genomics-assisted breeding for fruit quality traits. Sci Rep 7:4721CrossRefPubMedPubMedCentralGoogle Scholar
  174. Moore GA, Jacano CC, Neidigh JL (1992) Agrobacterium–mediated transformation of citrus stem segments and regeneration of transgenic plants. Plant Cell Rep 11:238–242Google Scholar
  175. Moore GA, Tozlu I, Weber CA, Guy CL (2000) Mapping quantitative trait loci for salt tolerance and cold tolerance in Citrus grandis (L.) Osb. xPoncirus trifoliata (L.) Raf. hybrid populations. Acta Hort 535:37–45CrossRefGoogle Scholar
  176. Mouhaya W, Allario T, Brumos J et al (2010) Sensitivity to high salinity in tetraploid citrus seedlings increases with water availability and correlates with expression of candidate genes. Funct Plant Biol 7(7):674–685CrossRefGoogle Scholar
  177. Muñoz-Amatriaín M, Cuesta-Marcos A, Endelman JB et al (2014) The USDA barley core collection: genetic diversity, population structure, and potential for genome-wide association studies. PLoS ONE 9:e94688CrossRefPubMedPubMedCentralGoogle Scholar
  178. Navarro L (2005) Necesidades y problemáticas de la mejora sanitaria y genética de los cítricos en España. Phytoma 170:2–5Google Scholar
  179. Navarro L, Roistacher C, Murashige T (1975) Improvement of shoot-tip grafting invitro for virus-free citrus. J Am Soc Hort Sci 100:471–479Google Scholar
  180. Navarro L, Aleza P, Cuenca J et al (2015) The triploid mandarin breeding program in Spain. Acta Hort 1065:48Google Scholar
  181. Nicolosi E (2007) Origin and taxonomy. In: Khan IA (ed) Citrus genetics, breeding and biotechnology. CAB International, Wallingford, UK, pp 19–44CrossRefGoogle Scholar
  182. Nicolosi E, Deng ZN, Gentile A et al (2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet 100:1155–1166CrossRefGoogle Scholar
  183. Niñoles R, Aleza P, Castillo MC et al (2015) Ploidy and gene expression in clementine. Acta Hort 1065:76Google Scholar
  184. Nishitani C, Hirai N, Komori S et al (2016) Efficient genome editing in apple using a CRISPR/Cas9 system. Sci Rep 6:31481CrossRefPubMedPubMedCentralGoogle Scholar
  185. Oiyama I, Okudai N, Takahara T (1981) Ploidy levels of seedlings obtained from 2x X 4x crosses in citrus. Proc Int Soc Citricult 1:32–34Google Scholar
  186. Ollitrault P, Navarro L (2012) Citrus. In: Badenes ML, Byrne DH (eds) Fruit breeding: handbook of plant breeding 8. New York, USA, Springer, pp 623–662CrossRefGoogle Scholar
  187. Ollitrault P, Dambier D, Jacquemont C et al (1996) In vitro rescue and selection of spontaneous triploid by flow cytometry for easy peeler citrus breeding. Proc Int Soc Citricult 1:254–258Google Scholar
  188. Ollitrault P, Dambier D, Luro F, Froelicher Y (2008) Ploidy manipulation for breeding seedless triploid citrus. Plant Breed Rev 30:323–352CrossRefGoogle Scholar
  189. Ollitrault P, Terol J, Chen C et al (2012a) A reference genetic map of C. clementina Hort. ex Tan.; citrus evolution inferences from comparative mapping. BMC Genom 13:593CrossRefGoogle Scholar
  190. Ollitrault P, Terol J, Garcia-Lor A et al (2012b) SNP mining in C. clementina BAC end sequences; transferability in the Citrus genus (Rutaceae), phylogenetic inferences and perspectives for genetic mapping. BMC Genom 13:13CrossRefGoogle Scholar
  191. Oueslati A, Salhi-Hannachi A, Luro F et al (2017) Genotyping by sequencing reveals the interspecific C. maxima/ C. reticulata admixture along the genomes of modern citrus varieties of mandarins, tangors, tangelos, orangelos and grapefruits. PLoS ONE 12(10):e0185618CrossRefPubMedPubMedCentralGoogle Scholar
  192. Pang XM, Hu CG, Deng XX (2007) Phylogenetic relationships within Citrus and its related genera as inferred from AFLP markers. Genet ResCrop Evol 54:429–436CrossRefGoogle Scholar
  193. Park T, Kim J, Hutten RCB et al (2007) Genetic positioning of centromeres using half-tetrad analysis in a 4x-2x cross population of potato. Genet 176(1):85–94CrossRefGoogle Scholar
  194. Patel M, Manvar T, Apurwa S et al (2014) Comparative de novo transcriptome analysis and metabolic pathway studies of Citrus paradisi flavedo from naive stage to ripened stage. Mol Biol Rep 41(5):3071–3080CrossRefPubMedGoogle Scholar
  195. Peña L, Cervera M, Juarez J et al (1995) Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants. Plant Cell Rep 14(10):616–619CrossRefPubMedGoogle Scholar
  196. Peña L, Martín-Trillo M, Juárez J et al (2001) Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat Biotech 19:263–267CrossRefGoogle Scholar
  197. Peña L, Cervera M, Fagoaga C et al (2007) Citrus. Biotech Agric For 60:35–50Google Scholar
  198. Penjor T, Yamamoto M, Uehara M et al (2013) Phylogenetic relationships of Citrus and its relatives based on matK gene sequences. PLoS ONE 8:e62574CrossRefPubMedPubMedCentralGoogle Scholar
  199. Perseguini JMKC, Silva GMB, Rosa JRBF et al (2015) Developing a common bean core collection suitable for association mapping studies. Genet Mol Biol 38:67–78CrossRefPubMedGoogle Scholar
  200. Pessoa-Filho M, Rangel P, Ferreira M (2010) Extracting samples of high diversity from thematic collections of large gene banks using a genetic-distance based approach. BMC Plant Biol 10:127CrossRefPubMedPubMedCentralGoogle Scholar
  201. Pino Del Carpio D, Basnet R, De Vos R et al (2011) Comparative methods for association studies: a case study on metabolite variation in a Brassica rapa core collection. PLoS ONE 6:e19624.  https://doi.org/10.1371/journal.pone.0019624CrossRefPubMedPubMedCentralGoogle Scholar
  202. Pons E, Alquézar B, Rodríguez A et al (2014) Metabolic engineering of β-carotene in orange fruit increases its in vivo antioxidant properties. Plant Biotech J 12(1):17–27.  https://doi.org/10.1111/pbi.12112CrossRefGoogle Scholar
  203. Ramadugu C, Keremane ML, Halbert SE et al (2016) Long term field evaluation reveals HLB resistance in Citrus relatives. Plant Dis 100(9):1858–1869CrossRefGoogle Scholar
  204. Rao ES, Kadirvel P, Symonds RC et al (2012) Using SSR markers to map genetic diversity and population structure of Solanum pimpinellifolium for development of a core collection. Plant Genet Res 10:38–48CrossRefGoogle Scholar
  205. Rapisarda P, Bellomo SE, Fabroni S, Russo G (2008) Juice quality of two new mandarin-like hybrids (Citrus clementina Hort. ex Tan x Citrus sinensis L. Osbeck) containing anthocyanins. J Agric Food Chem 56:2074–2078.  https://doi.org/10.1021/jf072616eCrossRefPubMedGoogle Scholar
  206. Rawat N, Kumar B, Albrecht U et al (2017) Genome resequencing and transcriptome profiling reveal structural diversity and expression patterns of constitutive disease resistance genes in Huanglongbing-tolerant Poncirus trifoliata and its hybrids. Hort Res 4:17064CrossRefGoogle Scholar
  207. Recupero GR, Russo G, Recupero S (2005) New promising citrus triploid hybrids selected from crosses between monoembryonic diploid female ant tetraploid male parents. Hort Sci 40:516–520Google Scholar
  208. Ren C, Liu X, Zhang Z et al (2016) CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci Rep 6:32289Google Scholar
  209. Riera N, Handique U, Zhang Y et al (2017) Characterization of antimicrobial-producing beneficial bacteria isolated from Huanglongbing escape citrus trees. Front Microbiol 8:2415.  https://doi.org/10.3389/fmicb.2017.02415CrossRefPubMedPubMedCentralGoogle Scholar
  210. Rodrigues CM, de Souza AA, Takita MA et al (2013) RNA-Seq analysis of Citrus reticulata in the early stages of Xylella fastidiosa infection reveals auxin-related genes as a defence response. BMC Genom 14:676CrossRefGoogle Scholar
  211. Roose MJ (1988) Isozymes and DNA restriction fragment length polymorphisms in citrus breeding and systematics. Proc Int Soc Citricult 1:155–165Google Scholar
  212. Roose ML, Williams T (2007) Mandarin variety named Tango. US Plant Patent (2007)/0056064 P1Google Scholar
  213. Roose M, Federici C, Mu L et al (2009) Map-based ancestry of sweet orange and other citrus variety groups. In: Gentile A, Tribulato E (eds) Second international citrus biotechnology symposium. Catania, ItalyGoogle Scholar
  214. Rouiss H, Cuenca J, Navarro L et al (2017a) Tetraploid citrus progenies arising from FDR and SDR unreduced pollen in 4x X 2x hybridizations. Tree Genet Genom 13:10CrossRefGoogle Scholar
  215. Rouiss H, Cuenca J, Navarro L et al (2017b) Unreduced megagametophyte production in lemon occurs via three meiotic mechanisms, predominantly second-division restitution. Front Plant Sci 8:1211CrossRefPubMedPubMedCentralGoogle Scholar
  216. Ruiz C, Asins MJ (2003) Comparison between Poncirus and Citrus genetic linkage maps. Theor Appl Genet 106:826–836CrossRefPubMedGoogle Scholar
  217. Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10(6):937–946CrossRefPubMedPubMedCentralGoogle Scholar
  218. Ruiz C, Paz Breto M, Asins M (2000) A quick methodology to identify sexual seedlings in citrus breeding programs using SSR markers. Euphy 112:89–94CrossRefGoogle Scholar
  219. Russo M, Bonaccorsi I, Torre G et al (2014) Underestimated sources of flavonoids, limonoids and dietary fibre: availability in lemon’s by-products. J Funct Foods 9:18–26CrossRefGoogle Scholar
  220. Savage EM, Gardner FE (1965) The origin and history of troyer and carrizo citranges. Citrus Ind 46:5–7Google Scholar
  221. Scora RW (1975) On the history and origin of citrus. Bull Torrey Bot Club 102:369–375CrossRefGoogle Scholar
  222. Scora RW (1988) Biochemistry, taxonomy and evolution of modern cultivated citrus. Citriculture: proceedings of the sixth international citrus congress, Tel Aviv, Israel, March 6–11Google Scholar
  223. Scora RW, Kumamoto J, Soost RK, Nauer EM (1982) Contribution to the origin of the grapefruit Citrus paradisi (Rutaceae). System Bot 7:170–177CrossRefGoogle Scholar
  224. Shalom L, Samuels S, Zur N et al (2014) Fruit load induces changes in globalgene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds. J Exp Bot 65(12):3029–3044CrossRefPubMedPubMedCentralGoogle Scholar
  225. Siviero A, Cristofani M, Furtado EL et al (2006) Identification of QTLs associated with citrus resistance to Phytophthora gummosis. J Appl Genet 47(1):23–28CrossRefPubMedGoogle Scholar
  226. Song G, Jia M, Chen K et al (2016) CRISPR/Cas9: a powerful tool for crop genome editing. Crop J 4(2):75–82CrossRefGoogle Scholar
  227. Soost R (1987) Breeding citrus-genetics and nucellar embryony. In: Abbott AJ, Atkin R (eds) Improving vegetatively propagated crops. Academic Press, London, pp 83–110Google Scholar
  228. Spiegel-Roy P, Vardi A (1992) ‘Shani,’ ‘Orah’ and ‘Winola’: three new selections from our breeding program In: Proceedings of the 7th international citrus congress of the international society of citriculture. Acireale, Italy, pp 72–73Google Scholar
  229. Starrantino A (1992) Use of triploids for production of seedless cultivars in citrus improvement program. Proc Int Soc Citricult 1:117–121Google Scholar
  230. Starrantino A, Recupero GR (1982) Citrus hybrids obtained in vitro from 2x females and 4x male. ProcInt Soc Citricult 1:31–32Google Scholar
  231. Stover E, Inch S, Richardson ML, Hall DG (2016) Conventional citrus of some scion/rootstock combinations show field tolerance under high Huanglongbing disease pressure. HortSci 51(2):127–132Google Scholar
  232. Sugiyama A, Omura M, Matsumoto H et al (2011) Quantitative trait loci (QTL) analysis of carotenoid content in citrus fruit. J Jpn Soc Hort Sci 80(2):136–144CrossRefGoogle Scholar
  233. Sugiyama A, Omura M, Shimada T et al (2014) Expression quantitative trait loci analysis of carotenoid metabolism-related genes in citrus. J Jpn Soc Hort Sci 83(1):32–43CrossRefGoogle Scholar
  234. Sun Q, Zheng L, Wan-Peng X et al (2014) Transcriptome analysis of blood orange (Citrus sinensis) following fruit bagging treatment by digital gene expression profiling. J Hort Sci Biotech 89(4):397–407CrossRefGoogle Scholar
  235. Swingle WT (1943) The botany of Citrus and its wild relatives in the orange subfamily (family Rutaceae, subfamily Aurantioideae). University of California Press, Berkeley, USAGoogle Scholar
  236. Swingle WT, Reece PC (1967) The botany of Citrus and its wild relatives. In: Reuther W, Webber H, Batchelor L (eds) The citrus industry, vol 1. University of California. Berkeley, USA, pp 190–430Google Scholar
  237. Tan F, Tu H, Liang W, Long J et al (2015) Comparative metabolic and transcriptional analysis of a doubled diploid and its diploid citrus rootstock (C. junos cv. Ziyang xiangcheng) suggests its potential value for stress resistance improvement. BMC Plant Biol 15:89CrossRefPubMedPubMedCentralGoogle Scholar
  238. Tanaka T (1977) Fundamental discussion of Citrus classification. Studia Citrol 14:1–6Google Scholar
  239. Tanksley SD, McCouch SR (1998) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277(5329):1063–1066CrossRefGoogle Scholar
  240. Tavoletti S, Bingham ET, Yandell BS et al (1996)Half tetrad analysis in alfalfa using multiple restriction fragment length polymorphism markers. Proc Natl Acad Sci USA 93(20):10918–10922Google Scholar
  241. Terol J, Conesa A, Colmenero JM et al (2007) Analysis of 13000 unique Citrus clusters associated with fruit quality, production and salinity tolerance. BMC Genom 8:31CrossRefGoogle Scholar
  242. Terol J, Naranjo MA, Ollitrault P, Talon M (2008) Development of genomic resources for Citrus clementina: characterization of three deep-coverage BAC libraries and analysis of 46,000 BAC end sequences. BMC Genom 9:423CrossRefGoogle Scholar
  243. Terol J, Tadeo FR, Ventimilla D, Talon M (2016) An RNA-Seq based reference transcriptome for Citrus. Plant Biotech J 14(3):938–950CrossRefGoogle Scholar
  244. Torres AM, Soost RK, Diedenhofen U (1978) Leaf isozymes as genetic markers in Citrus. AmJ Bot 65:869–881CrossRefGoogle Scholar
  245. Uzun A, Yesiloglu T (2012) Genetic diversity in Citrus. In: Caliskan M (ed) Genetic diversity in plants. InTech.  https://doi.org/10.5772/32885
  246. van Treuren R, Tchoudinova I, Soest LJM, Hintum TJL (2006) Marker-assisted acquisition and core collection formation: a case study in barley using AFLPs and pedigree data. Genet Resour Crop Evol 53:43–52CrossRefGoogle Scholar
  247. Hintum TJL van, Brown AHD, Spillane C, Hodgkin T (2000) Core collections of plant genetic resources. IPGRI Technical Bulletin No. 3. International Plant Genetic Resources Institute, Rome, ItalyGoogle Scholar
  248. Vardi A, Bleichman S, Aviv D (1990) Genetic transformation of citrus protoplast and regeneration of transgenic plants. Plant Sci 69:199–206Google Scholar
  249. Vardi A, Spiegel-Roy P, Elchanati A (1993) Mandarin tree named Mor. US Patent, pp 8378Google Scholar
  250. Vardi A, Spiegel-Roy P, Frydman-Shani A et al (2003) Citrus tree named Orri. US patent, pp 13,616 P2Google Scholar
  251. Vardi A, Levin I, Carmi N (2008) Induction of seedlessness in Citrus: from classical techniques to emerging biotechnological approaches. J Am Soc Hort Sci 133:117–126Google Scholar
  252. Velázquez K, Agüero J, Vives MC et al (2016) Precocious flowering of juvenile citrus induced by a viral vector based on citrus leaf blotch virus: a new tool for genetics and breeding. Plant Biotech J 14(10):1976–1985CrossRefGoogle Scholar
  253. Volk G, Bonnart R, Shepherd A et al (2012) Cryopreservation of citrus for long-term conservation. In: XII international citrus congress, Valencia, Spain. S01O02:27Google Scholar
  254. Waltz E (2016) Gene-edited CRISPR mushroom escapes US regulation. Nature 532:293CrossRefPubMedGoogle Scholar
  255. Wang X, Xu Y, Zhang S et al (2017) Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nat Genet 49:765–772CrossRefPubMedPubMedCentralGoogle Scholar
  256. Whelan AI, Lema MA (2015) Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina. GM Crops Food 6(4):253–265CrossRefPubMedPubMedCentralGoogle Scholar
  257. Williams TE, Roose ML (2004) ‘TDE2’ Mandarin hybrid (Shasta Gold(R) Mandarin), ‘TDE3’ Mandarin hybrid (Tahoe Gold(R) Mandarin) and ‘TDE4’ Mandarin hybrid (Yosemite Gold(R) Mandarin): Three new mid and late-season triploid seedless mandarin hybrids from California. In: Proceedings of 10th International Citrus Congress, vol 1, International Society of Citriculture, Agadir, Morocco, 2004, pp 394–398Google Scholar
  258. Wu GA, Prochnik S, Jenkins J et al (2014) Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotech 32:656–662CrossRefGoogle Scholar
  259. Wu GA, Terol J, Ibáñez V et al (2018) Genomics of the origin and evolution of Citrus. Nature 554(7692):311–316CrossRefPubMedPubMedCentralGoogle Scholar
  260. Xiong B, Gu X, Qiu X et al (2017) Variability in CitXET expression and XET activity in Citrus cultivar Huangguogan seedlings with differed degrees of etiolation. PLoS ONE 12(6):e0178973CrossRefPubMedPubMedCentralGoogle Scholar
  261. Xu Q, Chen L, Ruan X et al (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66CrossRefPubMedPubMedCentralGoogle Scholar
  262. Yahata M, Harusaki S, Komatsu H et al (2005) Morphological characterization and molecular verification of a fertile haploid pummelo (Citrus grandis Osbeck). J Amer Soc Hort Sci 130:34–40Google Scholar
  263. Yahata M, Yasuda K, Nagasawa K et al (2010) Production of haploid plant of ‘Banpeiyu’ pummelo [Citrus maxima (Burm.) Merr.] by pollination with soft X-ray-irradiated pollen. J Japan Soc Hort Sci 79(3):239–245Google Scholar
  264. Yan WG, Yong L, Agrama HA et al (2009) Association mapping of stigma and spikelet characteristics in rice (Oryza sativa L.). Mol Breed 24:277–292CrossRefPubMedPubMedCentralGoogle Scholar
  265. Yang ZN, Ye XR, Molina J et al (2003) Sequence analysis of a 282-kilobase region surrounding the citrus tristeza virus resistance gene (Ctv) locus in Poncirus trifoliata L. Raf Plant Phys 131:482–492CrossRefGoogle Scholar
  266. Yu JM, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotech 17:155–160CrossRefPubMedGoogle Scholar
  267. Yu K, Xu Q, Da X et al (2012) Transcriptome changes during fruit development and ripening of sweet orange (Citrus sinensis). BMC Genom 13:10CrossRefGoogle Scholar
  268. Yu Y, Chen C, Gmitter FG (2016) QTL mapping of mandarin (Citrus reticulata) fruit characters using high-throughput SNP markers. Tree Genet Genom 12:77CrossRefGoogle Scholar
  269. Zhang S, Shi Q, Albrecht U et al (2017) Comparative transcriptome analysis during early fruit development between three seedy citrus genotypes and their seedless mutants. Hort Res 4:17041CrossRefGoogle Scholar
  270. Zheng BB, Wu XM, Ge XX et al (2012) Comparative transcript profiling of a male sterile cybrid pummelo and its fertile type revealed altered gene expression related to flower development. PLoS ONE 7(8):e43758CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • José Cuenca
    • 1
  • Andrés Garcia-Lor
    • 1
  • Luis Navarro
    • 1
  • Pablo Aleza
    • 1
  1. 1.Tissue Culture LaboratoryCenter of Citriculture and Vegetable Production, Instituto Valenciano de Investigaciones Agrarias (IVIA)MoncadaSpain

Personalised recommendations