Advertisement

Apple (Malus spp.) Breeding: Present and Future

  • Santiago Pereira-Lorenzo
  • Manfred Fischer
  • Ana María Ramos-Cabrer
  • Isaura Castro
Chapter

Abstract

Apple breeding has been extremely successful in providing a highly diverse fruit crop. Recent (>50 millions years ago) genome-wide duplication (GWD) resulted in the 17 chromosomes in the Pyreae and confirmed the origin of cultivated apple on Malus sieversii being the same species as M. × domestica. Malus, as many other species in the family Rosaceae, shows gametophytic self-incompatibility (GSI), which forces outcrossing. GSI at the pistil is regulated by extacellular ribonuclease, S-RNase, which is encoded by S locus. Growers and agronomists have provided multiple cultivars with different colors, shapes, resistances, climatic adaptation or industrial aptitudes. The aim in apple breeding was the combination of different kinds of resistance and good fruit quality to produce dessert cultivars and cultivars for processing. Some of the best of these cultivars display resistance to scab (Venturia inaequalis), mildew (Podosphaera leucotricha), fire blight (Erwinia amylovora), bacterial canker (Pseudomonas syringae), red spider mite (Panonychus ulmi), winterfrost and good fruit quality. Different scab resistance sources of wild species (Vf, Vr, VA) were combined in the new series of cultivars. Multiple efforts worldwide have conserved most of that variation, the pillar for the traditional and new techniques profiting from the analysis of the apple genome, the genome-wide association studies (GWAS), identifying SNPs and genes, the analysis of genes differentially expressed (GDE) identified by qRT-PCR and microarray analysis, and the recent molecular genetic tool CRISPR/Cas9 to edit and correct the genome.

Keywords

Germplasm Diversity Breeding Hybridization Genomics Assisted selection Molecular markers Phenotypic traits 

References

  1. Bannier H-J (2011) Moderne Apfelzüchtung: Genetische Verarmung und Vitalitätsverluste erst bei Verzicht auf Fungizideinsatz sichtbar. Erwerbs-Obstbau 52:85–110CrossRefGoogle Scholar
  2. Baumgartner IO, Patocchi A, Frey JE et al (2015) Breeding elite lines of apple carrying pyramided homozygous resistance genes against apple scab and resistance against powdery mildew and fire blight. Plant Mol Biol Rep 121(3):647–656Google Scholar
  3. Baumgartner JO, Kellerhals M, Costa F et al (2016) Development of SNP-based assays for disease resistance and fruit quality traits in apple (Malus x domestica Borkh.) and validation in breeding pilot studies. Tree Genet Genom 12:35Google Scholar
  4. Benelli C, De Carlo A, Engelmann F (2013) Recent advances in the cryopreservation of shoot-derived germplasm of economically important fruit trees of Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis. Biotech Adv 31:175–185CrossRefGoogle Scholar
  5. Benson EE (2008) Cryopreservation theory. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 15–32CrossRefGoogle Scholar
  6. Bhatti S, Jha G (2010) Current trends and future prospects of biotechnological interventions through tissue culture in apple. Plant Cell Rep 29:1215–1225.  https://doi.org/10.1007/s00299-010-0907-8CrossRefPubMedGoogle Scholar
  7. Broertjes C, Van Harten AM (1988) Applied mutation breeding for vegetatively propagated crops. Elsevier, AmsterdamGoogle Scholar
  8. Brown SK (1998) Genetics of apple. In: Janick J (ed) Plant breeding reviews, vol 9. Wiley-Interscience. Purdue University, USA, pp 333–366Google Scholar
  9. Brown SK, Maloney KE (2005) Malus x domestica apple. In: Litz RE (ed) Biotechnology of fruit and nut crops. CABI Publishing, Cambridge, pp 475–511CrossRefGoogle Scholar
  10. Büttner R, Fischer M, Forsline PL et al (2000a) Genebank work for preservation of the genetic diversity of apple. Acta Hort 538:39–42CrossRefGoogle Scholar
  11. Büttner R, Geibel M, Fischer C (2000b) The genetic potential of scab and mildew resistance in Malus wild species. Acta Hort 538:67–70Google Scholar
  12. Büttner R, Fischer M, Forsline PL et al (2004) Gene banks for preservation of wild apple genetic resources. J Fruit Ornam Plant Res 12:99–105Google Scholar
  13. Coart E, Van Glabeke S, De Loose M et al (2006) Chloroplast diversity in the genus Malus: new insights into the relationship between the European wild apple (Malus sylvestris (L.) Mill.) and the domesticated apple (Malus domestica Borkh.). Mol Ecol 15(8):2171–2182CrossRefPubMedGoogle Scholar
  14. Cornille A, Giraud T, Smulders MJM et al (2014) The domestication and evolutionary ecology of apples. Trends Genet 30:57–65CrossRefPubMedGoogle Scholar
  15. Dapena E (1996) Review of Spanish collections. In: Case HJ (ed.) European Malus germplasm. Proceedings, 21–24 June 1995, Wye College, University of London, IPGRI, p 42Google Scholar
  16. De Filippis LF (2014) Crop improvement through tissue culture. In: Ahmad P, Wani MR, Azooz MM, Tran LSP (eds.) Improvement of crops in the era of climatic changes, vol 1. Springer Science + Business Media New York, pp 289–346Google Scholar
  17. De Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants, vol 3. Springer Science & Business Media, BerlinCrossRefGoogle Scholar
  18. Deberegh PC, Zimmerman RH (2002) Micropropagation technology and application. Kluwer Academic Publishers, BostonGoogle Scholar
  19. Dobránszki J, Teixeira da Silva JA (2010) Micropropagation of apple—a review. Biotech Adv 28:462–488CrossRefGoogle Scholar
  20. Dunemann F (2017) Neue Strategien zur Erzeugung haploider Kulturpflanzen durch Verfahren der Geneliminierung. Julius-Kühn-Archiv 30, im Druck.  https://doi.org/10.5073/jka.2017.457.007
  21. Einset J (1952) Spontaneous polyploidy in cultivated apples. Proc Am Soc Hort Sci 59:291–302Google Scholar
  22. Emeriewen O, Richter K, Kilian A et al (2014) Identification of a major quantitative trait locus for resistance to fire blight in the wild apple species Malus fusca. Mol Breed 34(2):407–419CrossRefGoogle Scholar
  23. Engelmann F (2012) Germplasm collection, storage and preservation. In: Altman A, Hazegawa PM (eds) Plant biotechnology and agriculture prospects for the 21st Century. Academic Press, Oxford, pp 255–268CrossRefGoogle Scholar
  24. FAO (1998) Statistic Series No. 148, Production yearbook 52. Rome Ferree DC, Carlson RF (1987) Apple rootstocks. In: Rom RC, Carlson RF (eds) Rootstocks for fruit crops. Wiley-Interscience, New York, pp 107–143Google Scholar
  25. Feng CH, Cui ZH, Li BQ, Chen L, Ma YL, Zhao YH, Wang QC (2013) Duration of sucrose preculture is critical for shoot regrowth of in vitro-grown apple shoot-tips cryopreserved by encapsulation-dehydration. Plant Cell, Tissue and Organ Culture (PCTOC) 112(3):369–78Google Scholar
  26. Ferreira V, Ramos-Cabrer AM, Carnide V et al (2016) Genetic pool structure of local apple cultivars from Portugal assessed by microsatellites. Tree Genet Genom 12(36).  https://doi.org/10.1007/s11295-016-0997-8
  27. Fischer C (1999) Results in apple breeding at Dresden-Pillnitz. Erwerbsobstbau 41:65–74Google Scholar
  28. Fischer M (ed) (2010) Farbatlas Obstsorten, 3rd edn. Verlag E. Ulmer, Stuttgart, GermanyGoogle Scholar
  29. Fischer M (2011) Obstzüchtung in der DDR - eine Erfolgsgeschichte. In: Rübensam, Wagemann: Erinnerung von Zeitzeugen an ihr Wirken in der Agrarwissenschaft der DDR. vanDerner Verlag, pp 139–157Google Scholar
  30. Fischer M, Dunemann F (2000) Search for polygenic scab and mildew resistance in apple varieties cultivated at the fruit Genebank Dresden-Pillnitz. Acta Hort 538:71–78CrossRefGoogle Scholar
  31. Fischer C, Fischer M (1996) Results in apple breeding at Dresden-Pillnitz—review. Gartenbauwiss 61:139–146Google Scholar
  32. Fischer M, Fischer C (2002) Pinova apple cultivar. Compact Fruit Tree 35(1):19–20Google Scholar
  33. Fischer M, Fischer C (2004) Genetic resources as basis for new resistant apple cultivars. J Fruit Ornam Plant Res, Poznan, 12 Special ed., pp 63–76Google Scholar
  34. Fischer M, Fischer C (2006) The Pillnitz re-series of apple cultivars: do they hold promise? Compact Fruit Tree 39(1):13–15Google Scholar
  35. Fischer M, Fischer C (2007) Die Zukunft: Resistente Apfelsorten. Vorträge Pflanzenzüchtung 72:165–170Google Scholar
  36. Fischer M, Fischer C (2008) Apfel, Malus domestica Borkh. Rundum gesund. In: Röbbelen G (Hrsg.): Entwicklung der Pflanzenzüchtung in Deutschland (1908–2008) - 100 Jahre GFP e.V. - eine Dokumentation. GFP Göttingen, pp 469–475Google Scholar
  37. Fischer C, Dierend W, Fischer M, Bier-Kamotzke A (2000) Stability of scab resistance in apple—new results, problems and chances of its durability (Stabilität der Schorfresistenz an Apfel—Neue Ergebnisse, Probleme und Chancen ihrer Erhaltung). Erwerbs-Obstbau 42:73–82Google Scholar
  38. Fischer M, Fischer C, Dierend W (2005) Evaluation of the stability of scab resistance in apple: a co-operation between gene bank curator, breeder and fruit grower. PGR Newslett 142:36–42Google Scholar
  39. Flachowsky H, Peil A, Hanke MV, Broggini G (2014) Erstes Feuerbrandresistenzgen isoliert. Obstbau 39(6):325–328Google Scholar
  40. Foroni I, Baptista C, Monteiro L et al (2012) The use of microsatellites to analyze relationships and to decipher homonyms and synonyms in Azorean apples (Malus × domestica Borkh.). Plant Syst Evol 298:1297–1313CrossRefGoogle Scholar
  41. Gasi F, Simon S, Pojskic N et al (2013) Evaluation of Apple (Malus x domestica) genetic resources in Bosnia and Herzegovina using microsatellite markers. HortSci 48(1):13–21Google Scholar
  42. Geibel M, Dehmer KJ, Forsline PL (2000) Biological diversity in Malus sieversii populations from Central Asia. Acta Hort 538:43–49CrossRefGoogle Scholar
  43. Germanà MA (2006) Double haploid production in fruit crops. Plant Cell Tiss Org 86:131–146.  https://doi.org/10.1007/s11240-006-9088-0CrossRefGoogle Scholar
  44. Gharghani A, Zamani Z, Talaie A et al (2009) Genetic identity and relationships of Iranian apple (Malus× domestica Borkh.) cultivars and landraces, wild Malus species and representative old apple cultivars based on simple sequence repeat (SSR) marker analysis. Genet Resour Crop Evol 56:829–842CrossRefGoogle Scholar
  45. Gross BL, Henk AD, Richards CM et al (2014) Genetic diversity in Malus × domestica (Rosaceae) through time in response to domestication. Am J Bot 101(10):1770–1779Google Scholar
  46. Guitton B, Kelner JJ, Celton JM et al (2016) Analysis of transcripts differentially expressed between fruited and deflowered ‘Gala’ adult trees: a contribution to biennial bearing understanding in apple. BMC Plant Biol 16:55CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hartmann W (2015) Farbatlas Alte Obstsorten, 5th edn. Verlag E, Ulmer StuttgartGoogle Scholar
  48. Hatton RG (1954) Paradise apple stocks. J Pom Hort Sci 13:293–350Google Scholar
  49. Höfer M (2004) In vitro androgenesis in apple improvement of the induction phase. Plant Cell Rep 22:365–370.  https://doi.org/10.1007/s00299-003-0701-yCrossRefPubMedGoogle Scholar
  50. Höfer M (2005) Regeneration of androgenic embryos in apple (Malus x domestica Borkh.) via anther and microspore culture. Acta Phys Plant 27:709–716CrossRefGoogle Scholar
  51. Holefors A (1999) Genetic transformation of the apple rootstock M26 with genes influencing growth properties. Acta Univer Agricul Sueciae Agraria 158:53Google Scholar
  52. Hurt A (1916) Theophrastus enquiry into plants. Publishing house William Heinemann, LondonGoogle Scholar
  53. IPGRI (1996) European Malus germplasm. In: Case HJ (ed.) Proceedings of a Workshop, 21–24 June 1995. Wye College, University of LondonGoogle Scholar
  54. Itoiz R, Royo B (2003) Isoenzymatic variability in an apple germplasm bank. Genet Resour Crop Evol 50:391–400CrossRefGoogle Scholar
  55. Jacobsen E, Schouten HJ (2008) Cisgenesis, a new tool for traditional plant breeding, should be exempted from the regulation on genetically modified organisms in a step by step approach. Potato Res 51:75–78CrossRefGoogle Scholar
  56. Janick J, Cummins JN, Brown SK, Hemmat M (1996) Apples. In: Janick J, Moore JN (eds) Fruit breeding. New York, pp 1–76Google Scholar
  57. Janssen BJ, Thodey K, Schaffer RJ et al (2008) Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biol 8:16.  https://doi.org/10.1186/1471-2229-8-16CrossRefPubMedPubMedCentralGoogle Scholar
  58. Jonas E, de Koning DJ (2013) Does genomic selection have a future in plant breeding? Trends Biotech 31(9):497–504CrossRefGoogle Scholar
  59. Juniper BE, Watkins R, Harris SA (1999) The origin of the apple. Acta Hort 484:27–33Google Scholar
  60. Kellerhals M, Gessler C (1995) Apfelzüchtung vor neuen Herausforderungen. Agrarforschung 2(2):61–64Google Scholar
  61. Kellerhals M, Székely T, Sauer C et al (2009) Pyramidisieren von Schorfresistenzen in der Apfelzüchtung. Erwerbs-Obstbau 51:21–28CrossRefGoogle Scholar
  62. Ko K, Brown SK, Norelli JL, Aldwinckle HS (1998) Alterations in nptII and gus expression following micropropagation of transgenic M7 apple rootstock lines. J Am Soc Hort Sci 123:11–18Google Scholar
  63. Koller B, Gessler C, Bertschinger L, Kellerhals M (1995) Technikfolgen des Einsatzes gentechnisch veränderter krankheitsresistenter Nutzpflanzen - Teil Apfel. Fachstudie Technikfolgen Apfel, Eidgenössische Forschungsanstalt für Obst-, Wein- und Gartenbau Wädenswil, ZürichGoogle Scholar
  64. Krens FA, Schaart JG, van der Burgh AM et al (2015) Cisgenic apple trees; development, characterization, and performance. Front Plant Sci 6:286.  https://doi.org/10.3389/fpls.2015.00286CrossRefPubMedPubMedCentralGoogle Scholar
  65. Lambardi M, De Carlo A (2003) Application of tissue culture to the germplasm conservation of temperate broad-leaf trees. In: Jain SM, Ishii K (eds) Micropropagation of woody trees and fruits. Kluwer Ac Pub, Dordrecht, pp 815–840CrossRefGoogle Scholar
  66. Lambert C, Tepfer D (1992) Use of Agrobacterium rhizogenes to create transgenic apple trees having an altered organogenic response to hormones. Theor Appl Genet 85:105–109CrossRefPubMedGoogle Scholar
  67. Lassois L, Denancé C, Ravon E et al (2016) Genetic diversity, population structure, parentage analysis, and construction of core collections in the French apple germplasm based on SSR markers. Plant Mol Biol Rep 34:827CrossRefGoogle Scholar
  68. Leforestier D, Ravon E, Muranty H et al (2015) Genomic basis of the differences between cider and dessert apple varieties. Evol Appl 8:650–661CrossRefPubMedPubMedCentralGoogle Scholar
  69. Lespinasse Y (2001) D.A.R.E. Newsletter No. 4, INRA, AngersGoogle Scholar
  70. Li SB, OuYang WZ, Hou XJ et al (2015) Genome-wide identification, isolation and expression analysis of auxin response factor (ARF) gene family in sweet orange (Citrus sinensis). Front Plant Sci 6:119.  https://doi.org/10.3389/fpls.2015.00119CrossRefPubMedPubMedCentralGoogle Scholar
  71. Liang W, Dondini L, De Franceschi P et al (2015) Genetic diversity, population structure and construction of a core collection of apple cultivars from Italian germplasm. Plant Mol Biol Rep 33:458–473CrossRefGoogle Scholar
  72. Lizarraga A, Fraga M, Ascasibar J, Gonzalez ML (2017) In vitro propagation and recovery of eight apple and two pear cultivars held in a germplasm bank. Am J Plant Sci 8:2238–2254.  https://doi.org/10.4236/ajps.2017.89150CrossRefGoogle Scholar
  73. Maggioni L, Janes R, Hayes A et al (1997) Report of a working group on Malus/Pyrus. First meeting, 15–17 May. Dublin, Ireland. IPGRI, RomaGoogle Scholar
  74. Magyar-Tabori K, Dobranszki J, Teixeira da Silva A et al (2010) The role of cytokinins in shoot organogenesis in apple. Plant Cell Tiss Org 101:251–267.  https://doi.org/10.1007/s11240-010-9696-6CrossRefGoogle Scholar
  75. Masseron A (1989) Les porte-greffe pommier, poirier et nashi. CTIFL, ParisGoogle Scholar
  76. Morgan J, Richards A (1993) The book of apples. Ebury Press, LondonGoogle Scholar
  77. Nishitani C, Hirai N, Komori S et al (2016) Efficient genome editing in apple using a CRISPR/Cas9 system. Sci Rep 6:31481.  https://doi.org/10.1038/srep31481CrossRefPubMedPubMedCentralGoogle Scholar
  78. Noiton DAM, Alspach PA (1996) Founding clones, inbreeding, coancestry, and status number of modern apple cultivars. J Am Soc Hort Sci 121:773–782Google Scholar
  79. Norelli JL, Aldwinckle HS (1993) The role of aminoglycoside antibiotics in the regeneration and selection of neomycin phosphotransferase transgenic apple tissue. J Am Soc Hort Sci 118:311–316Google Scholar
  80. Norelli JL, Aldwinckle HS, Destéfano-Beltrán L, Jaynes JM (1994) Transgenic ‘Malling 26’ apple expressing the attacin E gene has increased resistance to Erwinia amylovora. Euphy 77:123–128CrossRefGoogle Scholar
  81. Osakabe Y, Osakabe K (2015) Genome editing with engineered nucleases in plants. Plant Cell Phys 5:389–400CrossRefGoogle Scholar
  82. Panis B, Lambardi M (2006) Status of cryopreservation technologies in plants (crops and forest trees). In: Ruane J, Sonnino A (eds) The role of biotechnology in exploring and protecting agricultural genetic resources. FAO, Rome, pp 61–78Google Scholar
  83. Paprstein F, Sedlak J, Polak J et al (2008) Results of in vitro thermotherapy of apple cultivars. Plant Cell Tiss Org 94:347–352.  https://doi.org/10.1007/s11240-008-9342-8CrossRefGoogle Scholar
  84. Paul H, Daigny G, Sangwan-Norreel BS (2000) Cryopreservation of apple (Malus x domestica Borkh.) shoot tips following encapsulation-dehydration or encapsulation-vitrification. Plant Cell Rep 19:768–774CrossRefGoogle Scholar
  85. Pereira-Lorenzo S, Ramos-Cabrer AM, Ascasíbar-Errasti J, Piñeiro-Andión J (2003) Analysis of apple germplasm in Northwestern Spain. J Am Soc Hort Sci 128(1):67–84Google Scholar
  86. Pereira-Lorenzo S, Ramos-Cabrer AM, Díaz-Hernández MB (2007) Evaluation of genetic identity and variation of local apple cultivars (Malus×domestica Borkh.) from Spain using microsatellite markers. Genet Resour Crop Evol 54:405–420CrossRefGoogle Scholar
  87. Pereira-Lorenzo S, Urrestarazu J, Ramos-Cabrer AM et al (2017) Analysis of the genetic diversity and structure of the Spanish apple genetic resources suggests the existence of an Iberian genepool. Ann Appl Biol 171(3):424–440CrossRefGoogle Scholar
  88. Petzold H (1990) Apfelsorten, 4th edn. Publishing House Neumann, RadebeulGoogle Scholar
  89. Pina A, Urrestarazu J, Errea P (2014) Analysis of the genetic diversity of local apple cultivars from mountainous areas from Aragon (Northeastern Spain). Sci Hort 174:1–9CrossRefGoogle Scholar
  90. Radchuk VV, Korkhovoy V (2005) The rolB gene promotes rooting in vitro and increases fresh root weight in vivo of transformed apple scion cultivar ‘Fiorina’. Plant Cell Tiss Org 81:203–212CrossRefGoogle Scholar
  91. Rai MK, Shekhawat NS (2014) Recent advances in genetic engineering for improvement of fruit crops. Plant Cell Tiss Org 116:1–15.  https://doi.org/10.1007/s11240-013-0389-9CrossRefGoogle Scholar
  92. Ramos-Cabrer AM, Díaz-Hernández MB, Pereira-Lorenzo S (2007) Morphology and microsatellites in Spanish apple collections. J Hort Sci Biotech 82:257–265CrossRefGoogle Scholar
  93. Reed B (2008) Plant cryopreservation: a practical guide. Springer Science, New YorkCrossRefGoogle Scholar
  94. Ru S, Main D, Evans K, Peace C (2015) Current applications, challenges, and perspectives of marker-assisted seedling selection in Rosaceae tree fruit breeding. Tree Genet Genom 11:8.  https://doi.org/10.1007/s11295-015-0834-5CrossRefGoogle Scholar
  95. Rueß F (2016) Resistente und robuste Obstsorten. E. Ulmer, Stuttgart, Taschenatlas, VerlGoogle Scholar
  96. Sarmiento FM (1986) Catálogo de voces vulgares y enespecial de voces gallegas de diferentes vegetales. In: Pensado JL (ed) Ediciones Universidad Salamanca, SalamancaGoogle Scholar
  97. Sarwar M, Skirvin RM (1997) Effect of thidiazuron and 6-benzylaminopurine on adventitious shoot regeneration from leaves of three strains of ‘Mcintosh’ Apple (Malus x domestica Borkh.) in vitro. Sci Hort 68:95–100.  https://doi.org/10.1016/S0304-4238(96)00971-5CrossRefGoogle Scholar
  98. Sassa H, Kakui H, Minamikawa M (2010) Pollen-expressed F-box gene family and mechanism of S-RNase-based gametophytic self-incompatibility (GSI) in Rosaceae. Sex Plant Reprod 23:39–43CrossRefPubMedGoogle Scholar
  99. Sattler I, Bannier HJ (2016) Umfassende Vitalität statt monogener Schorfresistenz. Öko-Obstbau 2:26–28Google Scholar
  100. Scorza R, Callahan A, Dardick C et al (2013) Genetic engineering of Plum pox virus resistance: ‘HoneySweet’ plum—from concept to product. Plant Cell Tiss Org 115:1–12CrossRefGoogle Scholar
  101. Sedira M, Holefors A, Walender M (2001) Protocol for transformation of the apple rootstock Jork 9 with the rolB gene and its influence on rooting. Plant Cell Rep 20:517–524CrossRefGoogle Scholar
  102. Sedlak J, Paprstein F (2016) In vitro establishment and proliferation of apple cultivars. Acta Hort 1113:107–112CrossRefGoogle Scholar
  103. Spiegel-Roy P (1990) Economic and agricultural impact of mutation breeding in fruit trees. Mut Breed Rev 5:1–26Google Scholar
  104. Stehr R (2000) Eignungsprüfung und Marktchancen neuer schorfresistenter Apfelsorten im Alten Land. Dissertation, Humboldt University Berlin, Mitt. OVRGoogle Scholar
  105. Towill LE, Forsline PL, Walters C et al (2004) Cryopreservation of Malus germplasm using a winter vegetative bud method: results from 1915 accessions. Cryo-Lett 25:323–334Google Scholar
  106. Tripathi S, Suzuki J, Gonsalves D (2007) Development of genetically engineered resistant papaya for papaya ringspot virus in a timely manner. In: Ronald PC (ed) Plant-pathogen interactions. Methods in molecular biology, vol 354. Humana Press, Totowa, New Jersey, pp 197–240Google Scholar
  107. Tubbs FR (1973) Research fields in the interaction of rootstocks and scions in woody perennials. Hort Abst 43(247–253):325–335Google Scholar
  108. Urrestarazu J, Miranda C, Santesteban LG, Royo JB (2012) Genetic diversity and structure of local apple cultivars from Northeastern Spain assessed by microsatellite markers. Tree Genet Genomes 8:1163–1180CrossRefGoogle Scholar
  109. Urrestarazu J, Denancé C, Ravon E et al (2016) Analysis of the genetic diversity and structure across a wide range of germplasm reveals prominent gene flow in apple at the European level. BMC Plant Biol 16:130.  https://doi.org/10.1186/s12870-016-0818-0CrossRefPubMedPubMedCentralGoogle Scholar
  110. Van Harten AM (1998) Mutation breeding: theory and practical applications. Cambridge Univ Press, CambridgeGoogle Scholar
  111. Van Treuren R, Kemp H, Ernsting G et al (2010) Microsatellite genotyping of apple (Malus × domestica Borkh.) genetic resources in the Netherlands: application in collection management and variety identification. Genet Resour Crop Evol 57:853–865CrossRefGoogle Scholar
  112. Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42(10):833–839CrossRefPubMedGoogle Scholar
  113. Way RD, Aldwinckle HS, Lamb RC et al (1991) Apples (Malus). Acta Hort 290:3–46CrossRefGoogle Scholar
  114. Webster AD, Wertheim SJ (2003) Apple rootstocks. In: Ferree DC, Warrington IJ (eds) Apples: botany, production and uses. CABI, New York, pp 91–124CrossRefGoogle Scholar
  115. Wertheim SJ (1998) Apple rootstocks. In: Wertheim SJ (ed) Rootstock Guide. Fruit Res Stat, Wilhelminadorp, pp 19–60Google Scholar
  116. Wu Y, Engelmann F, Zhao Y et al (1999) Cryopreservation of apple shoot tips: importance of cryopreservation technique and of conditioning of donor plants. Cryo Lett 20:121–130Google Scholar
  117. Xu J, Wang Y, Zhang Y, Chai TY (2008) Rapid in vitro multiplication and ex vitro rooting of Malus zumi (Matsumura) Rehd. Acta Phys Plant 30:129–132.  https://doi.org/10.1007/s11738-007-0075-9CrossRefGoogle Scholar
  118. Yamane H, Tao R (2009) Molecular basis of self-(in)compatibility and current status of S-genotyping in rosaceous fruit trees. J Japan Soc Hort Sci 78:137–157CrossRefGoogle Scholar
  119. Yepes LM, Aldwinckle SH (1994) Micropropagation of thirteen Malus cultivars and rootstocks, and effect of antibiotics on proliferation. Plant Grow Regul 15:55–67.  https://doi.org/10.1007/BF00024677CrossRefGoogle Scholar
  120. Zhu LH, Holefors A, Ahlman A et al (2001) Transformation of the apple rootstock M. 9/29 with the rolB gene and its influence on rooting and growth. Plant Sci 160:433–439CrossRefPubMedGoogle Scholar
  121. Zimmerman RH (1991) Micropropagation of temperate zone fruit and nut crops. In: Debergh PC, Zimmerman RH (eds) Micropropagation. Kluwer Academic Publishers, Dordrecht, pp 231–246CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Santiago Pereira-Lorenzo
    • 1
  • Manfred Fischer
    • 2
  • Ana María Ramos-Cabrer
    • 1
  • Isaura Castro
    • 3
  1. 1.Department of Crop Production and Engineering ProjectsUniversidad de Santiago de CompostelaLugoSpain
  2. 2.Fruit Genebank, Institute for Plant Genetics and Crop Plant Research (IPK)Dresden, PillnitzGermany
  3. 3.Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Universidade de Trás-os-Montes e Alto DouroVila RealPortugal

Personalised recommendations