Blood Flow and Arterial Disease

  • Nicolaas Westerhof
  • Nikolaos Stergiopulos
  • Mark I. M. Noble
  • Berend E. Westerhof


Atherosclerosis is a localized disease. It develops near bifurcations and areas where shear stress, the frictional force that the blood flow exerts on the intimal surface, is low (shear stress less than 4 dynes/cm2). A classic example is the carotid sinus, where flow separation takes place in some periods of the cardiac cycle leading to low and oscillatory shear stress. Low shear results in lesions and vulnerable plaque, while in areas with vortices and variable shear more stable plaques develop, composition of these plaques also differs. Wall shear stress not only plays a role in atherosclerosis, but is also a major determinant of graft failure and intima hyperplasia following angioplasty and stenting.


Atherosclerosis Plaque Shear stress Carotid sinus Endothelium 


  1. 1.
    Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282:2035–42.CrossRefGoogle Scholar
  2. 2.
    Cheng C, Tempel D, van Haperen R, van der Baan A, Grosveld F, Daemen MJ, et al. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation. 2006;113:2744–53.CrossRefPubMedGoogle Scholar
  3. 3.
    Davies PF, Barbee KA, Lal R, Robotewskyj A, Griem ML. Hemodynamics and atherogenesis. Endothelial surface dynamics in flow signal transduction. Ann N Y Acad Sci. 1995;748:86–102. discussion 102-103CrossRefPubMedGoogle Scholar
  4. 4.
    Goubergrits L, Affeld K, Fernandez-Britto J, Falcon L. Atherosclerosis in the human common carotid artery. A morphometric study of 31 specimens. Pathol Res Pract. 2001;197:803–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Dobrin PB, Littooy FN, Endean ED. Mechanical factors predisposing to intimal hyperplasia and medial thickening in autogenous vein grafts. Surgery. 1989;105:393–400.PubMedGoogle Scholar
  6. 6.
    Kohler T, Jawien A. Flow affects development of intimal hyperplasia after arterial injury in rats. Arterioscler Thromb. 1992;12:963–71.PubMedGoogle Scholar
  7. 7.
    Wentzel JJ, Krams R, Schuurbiers JC, Oomen JA, Kloet J, Van der Giessen WJ, et al. Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries. Circulation. 2001;103:1740–5.CrossRefPubMedGoogle Scholar
  8. 8.
    De Santis G, Conti M, Trachet B, De Schryver T, De Beule M, Degroote J, et al. Impact of stent-vessel (mal) apposition following carotid artery stenting: mind the gaps! Ann Biomed Eng. 2013;16:648–59.Google Scholar
  9. 9.
    Mantha A, Karmonik C, Benndorf G, Strother C, Metcalfe R. Hemodynamics in a cerebral artery before and after the formation of an aneurysm. AJNR Am J Neuroradiol. 2006;27:1113–8.PubMedGoogle Scholar
  10. 10.
    Boussel L, Rayz V, McCulloch C, Martin A, Acevedo-Bolton G, Lawton M, et al. Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke. 2008;39:2997–3002.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Trachet B, Renard M, De Santis G, Staelens S, De Backer J, Antiga L, et al. An integrated framework to quantitatively link mouse-specific hemodynamics to aneurysm formation in angiotensin II-infused ApoE −/− mice. Ann Biomed Eng. 2011;39:2430–44.CrossRefPubMedGoogle Scholar
  12. 12.
    Yeung JJ, Kim HJ, Abbruzzese TA, Vignon-Clementel IE, Draney-Blomme MT, Yeung KK, et al. Aortoiliac hemodynamic and morphologic adaptation to chronic spinal cord injury. J Vasc Surg. 2006;44:1254–65.CrossRefPubMedGoogle Scholar
  13. 13.
    Di Achille P, Tellides G, Humphrey JD. Hemodynamics-driven deposition of intraluminal thrombus in abdominal aortic aneurysms. Int J Numer Method Biomed Eng. 2017;33:e2828.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nicolaas Westerhof
    • 1
  • Nikolaos Stergiopulos
    • 2
  • Mark I. M. Noble
    • 3
  • Berend E. Westerhof
    • 1
  1. 1.Department of Pulmonary Diseases, Amsterdam Cardiovascular SciencesVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Laboratory of Hemodynamics and Cardiovascular TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL), Institute of BioengineeringLausanneSwitzerland
  3. 3.Cardiovascular Medicine, Department of Medicine and TherapeuticsUniversity of AberdeenAberdeenUnited Kingdom

Personalised recommendations