Advertisement

Pulmonary Hemodynamics

  • Nicolaas Westerhof
  • Nikolaos Stergiopulos
  • Mark I. M. Noble
  • Berend E. Westerhof
Chapter

Abstract

The pulmonary circulation obeys to the same physical laws and principles as the systemic circulation. However, large differences exist. Pulmonary Vascular Resistance is about seven-fold lower than its systemic counterpart. The pulmonary vasculature is a system of relatively short tubes that divide with a daughter-mother ratio of about 3 in arteries and inversely for veins. Also the venous system has little storage function. The resistance and compliance of the arterial and venous vasculature do not differ greatly. The product of arterial resistance and compliance (RC-time constant) is similar in health and hypertension. The shape of the right ventricle is much more crescent-shape while the left heart is more of an ellipsoidal shape, making estimations of right ventricular wall stress inaccurate. Systolic and diastolic pulmonary artery pressures are about 1.6 and 0.6 times mean pressure, respectively. Qualitatively the waves and input impedance are not unlike those in the systemic circulation, only the pressure and impedance modulus magnitude are smaller. In pulmonary hypertension pressures may rise by a factor 5.

Keywords

Pulmonary vascular resistance, RC-time Pressure proportionality Pulmonary hypertension Vascular models 

References

  1. 1.
    Murgo JP, Westerhof N. Input impedance of the pulmonary arterial system in normal man. Effects of respiration and comparison to systemic impedance. Circ Res. 1984;54:666–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Horsfield K. Morphometry of the small pulmonary arteries in man. Circ Res. 1978;42:593–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Huang W, Yen RT, McLaurine M, Bledsoe G. Morphometry of the human pulmonary vasculature. J Appl Physiol. 1996;81:2123–33.CrossRefPubMedGoogle Scholar
  4. 4.
    Engelberg J, Dubois AB. Mechanics of pulmonary circulation in isolated rabbit lungs. Am J Phys. 1959;196:401–14.Google Scholar
  5. 5.
    Bhattacharya J, Nanjo S, Staub NC. Micropuncture measurement of lung microvascular pressure during 5-HT infusion. J Appl Physiol Respir Environ Exerc Physiol. 1982;52:634–7.PubMedGoogle Scholar
  6. 6.
    Hakim TS, Kelly S. Occlusion pressures vs. micropipette pressures in the pulmonary circulation. J Appl Physiol. 1989;67:1277–85.CrossRefPubMedGoogle Scholar
  7. 7.
    Michel RP, Hakim TS, Freeman CR. Distribution of pulmonary vascular resistance in experimental fibrosis. J Appl Physiol. 1988;65:1180–90.CrossRefPubMedGoogle Scholar
  8. 8.
    Handoko ML, De Man FS, Oosterveer FP, Bogaard HJ, Vonk-Noordegraaf A, Westerhof N. A critical appraisal of transpulmonary and diastolic pressure gradients. Physiol Rep. 2016;4 pii: e12910.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chemla D, Castelain V, Humbert M, Hébert JL, Simonneau G, Lecarpentier Y, et al. New formula for predicting mean pulmonary artery pressure using systolic pulmonary artery pressure. Chest. 2004;126:1313–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Syyed R, Reeves JT, Welsh D, Raeside D, Johnson MK, Peacock AJ. The relationship between the components of pulmonary artery pressure remains constant under all conditions in both health and disease. Chest. 2008;133:633–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Lankhaar J-W, Westerhof N, Faes TJC, Marques KMJ, Marcus JT, Postmus PE, et al. Quantification of right ventricular afterload in patients with and without pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2006;291:1731–7.CrossRefGoogle Scholar
  12. 12.
    Lankhaar J-W, Westerhof N, Faes TJC, Gan CT, Marques KM, Boonstra A, et al. Pulmonary vascular resistance and compliance stay inversely related during treatment of pulmonary hypertension European. Eur Heart J. 2008;29:1688–95.CrossRefPubMedGoogle Scholar
  13. 13.
    Reuben SR. Compliance of the human pulmonary arterial system in disease. Circ Res. 1971;29:40–50.CrossRefPubMedGoogle Scholar
  14. 14.
    Tedford RJ, Hassoun PM, Mathai SC, Girgis RE, Russell SD, Thiemann DR, et al. Pulmonary capillary wedge pressure augments right ventricular pulsatile loading. Circulation. 2012;125:289–97.CrossRefPubMedGoogle Scholar
  15. 15.
    Pagnamenta A, Fesler P, Vandinivit A, Brimioulle S, Naeije R. Pulmonary vascular effects of dobutamine in experimental pulmonary hypertension. Crit Care Med. 2003;31:1140–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Maggiorini M, Brimioulle S, De Canniere D, Delcroix M, Naeije R. Effects of pulmonary embolism on pulmonary vascular impedance in dogs and minipigs. J Appl Physiol. 1998;84:815–21.CrossRefPubMedGoogle Scholar
  17. 17.
    Taylor MG. The input impedance of an assembly of randomly branching elastic tubes. Biophys J. 1966;6:29–51.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Vulliemoz S, Stergiopulos N, Meuli R. Estimation of local aortic elastic properties with MRI. Magn Reson Med. 2002;47:649–54.CrossRefPubMedGoogle Scholar
  19. 19.
    Ibrahim e-SH, Shaffer JM, White RD. Assessment of pulmonary artery stiffness using velocity encoding magnetic resonance imaging: evaluation of techniques. Magn Reson Imag. 2011;29:966–74.CrossRefGoogle Scholar
  20. 20.
    Reuben SR. Wave transmission in the pulmonary arterial system in disease in man. Circ Res. 1970;27:523–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Kopeć G, Moertl D, Jankowski P, Tyrka A, Sobień B, Podolec P. Pulmonary artery pulse wave velocity in idiopathic pulmonary arterial hypertension. Can J Cardiol. 2013;29:683–90.CrossRefPubMedGoogle Scholar
  22. 22.
    van den Bos GC, Westerhof N, Randall OS. Pulse wave reflection: can it explain the differences between systemic and pulmonary pressure and flow waves? A study in dogs. Circ Res. 1982;51:479–85.CrossRefPubMedGoogle Scholar
  23. 23.
    Nakayama Y, Sugimachi M, Nakanishi N, Takaki H, Okano Y, Satoh T, et al. Noninvasive differential diagnosis between chronic pulmonary thromboembolism and primary pulmonary hypertension by means of Doppler ultrasound measurement. J Am Coll Cardiol. 1998;31:1367–71.CrossRefPubMedGoogle Scholar
  24. 24.
    Lammers S, Scott D, Hunter K, Tan W, Shandas R, Stenmark KR. Mechanics and function of the pulmonary vasculature: implications for pulmonary vascular disease and right ventricular function. Compr Physiol. 2012;2:295–319.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Segers P, Brimioulle S, Stergiopulos N, Westerhof N, Naeije R, Maggiorini M, et al. Pulmonary arterial compliance in dogs and pigs: the three-element windkessel model revisited. Am J Phys. 1999;277:H725–31.Google Scholar
  26. 26.
    Tawhai MH, Clark AR, Burrowes KS. Computational models of the pulmonary circulation: insights and the move towards clinically directed studies. Pulm Circ. 2011;1:224–338.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Qureshi MU, Vaughan GD, Sainsbury C, Johnson M, Peskin CS, Olufsen MS, et al. Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation. Biomech Model Mechanobiol. 2014;13:1137–54.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Dawson CA, Krenz GS, Karau KL, Haworth ST, Hanger CC, Linehan JH. Structure-function relationships in the pulmonary arterial tree. J Appl Physiol. 1999;86:569–83.CrossRefPubMedGoogle Scholar
  29. 29.
    Moledina S, de Bruyn A, Schievano S, Owens CM, Young C, Haworth SG, et al. Fractal branching quantifies vascular changes and predicts survival in pulmonary hypertension: a proof of principle study. Heart. 2011;97:1245–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Tawhai MH, Burrowes KS. Modelling pulmonary blood flow. Respir Physiol Neurobiol. 2008;163:150–77. ReviewCrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Fung YC, Sobin SS. Theory of sheet flow in lung alveoli. J Appl Physiol. 1969;26:472–88.CrossRefPubMedGoogle Scholar
  32. 32.
    Sobin SS, Fung YC. Response to challenge to the Sobin-Fung approach to the study of pulmonary microcirculation. Chest. 1992;101:1135–43. ReviewCrossRefPubMedGoogle Scholar
  33. 33.
    de Man FS, Handoko ML, van Ballegoij JJ, Schalij I, Bogaards SJ, Postmus PE, et al. Bisoprolol delays progression towards right heart failure in experimental pulmonary hypertension. Circ Heart Fail. 2012;5:97–105.CrossRefPubMedGoogle Scholar
  34. 34.
    Overbeek MJ, Lankhaar JW, Westerhof N, Voskuyl AE, Boonstra A, Bronzwaer JG, et al. Right ventricular contractility in systemic sclerosis-associated and idiopathic pulmonary arterial hypertension. Eur Respir J. 2008;31:1160–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Wong YY, Westerhof N, Ruiter G, Lubberink M, Raijmakers P, Knaapen P, et al. Systolic pulmonary artery pressure and heart rate are main determinants of oxygen consumption in the right ventricular myocardium of patients with idiopathic pulmonary arterial hypertension. Eur J Heart Fail. 2011;13:1290–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Saouti N, Westerhof N, Helderman F, Marcus JT, Boonstra A, Postmus PE, et al. Right ventricular oscillatory power is a constant fraction of total power irrespective of pulmonary artery pressure. Am J Respir Crit Care Med. 2010;182:1315–20.CrossRefPubMedGoogle Scholar
  37. 37.
    Brimioulle S, Wauthy P, Ewalenko P, Rondelet B, Vermeulen F, Kerbaul F, et al. Single-beat estimation of right ventricular end-systolic pressure-volume relationship. Am J Physiol Heart Circ Physiol. 2003;284:H1625–30.CrossRefGoogle Scholar
  38. 38.
    Trip P, Rain S, Handoko ML, van der Bruggen C, Bogaard HJ, Marcus JT, et al. Clinical relevance of right ventricular diastolic stiffness in pulmonary hypertension. Eur Respir J. 2015;45:1603–12.CrossRefPubMedGoogle Scholar
  39. 39.
    Rain S, Handoko ML, Trip P, Gan CT, Westerhof N, Stienen GJ, et al. Right ventricular diastolic impairment in patients with pulmonary arterial hypertension. Circulation. 2013;128:2016–25.CrossRefPubMedGoogle Scholar
  40. 40.
    Belenkie I, Smith ER, Tyberg JV. Ventricular interaction: from bench to bedside. Ann Med. 2001;33:236–41. ReviewCrossRefPubMedGoogle Scholar
  41. 41.
    Janicki JS, Weber KT. The pericardium and ventricular interaction, distensibility, and function. Am J Phys. 1980;238:H494–503.Google Scholar
  42. 42.
    Stacher E, Graham BB, Hunt JM, Gandjeva A, Groshong SD, McLaughlin VV, et al. Modern age pathology of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;186:261–72.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Chazova I, Loyd JE, Zhdanov VS, Newman JH, Belenkov Y, Meyrick B. Pulmonary artery adventitial changes and venous involvement in primary pulmonary hypertension. Am J Pathol. 1995;146:389–97.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Kafi SA, Mélot C, Vachiéry J-L, Brimioulle S, Naeije R. Partitioning of pulmonary vascular resistance in primary pulmonary hypertension. J Am Coll Cardiol. 1998;31:1372–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Reid LM. Structure and function in pulmonary hypertension: new perceptions. Chest. 1966;89:279–88.CrossRefGoogle Scholar
  46. 46.
    Rabinovitch M, Gamble W, Nadas AS, Miettinen OS, Reid L. Rat pulmonary circulation after chronic hypoxia: hemodynamic and structural features. Am J Phys. 1979;236:H818–27.Google Scholar
  47. 47.
    Hopkins N, McLoughlin P. The structural basis of pulmonary hypertension in chronic lung disease: remodelling, rarefaction or angiogenesis? J Anat. 2002;201:335–48.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Zhou C, Crockett ES, Batten L, McMurtry IF, Stevens T. Pulmonary vascular dysfunction secondary to pulmonary arterial hypertension: insights gained through retrograde perfusion. Am J Physiol Lung Cell Mol Physiol. 2018;314:L836–45.Google Scholar
  49. 49.
    Su J, Manisty C, Parker KH, Simonsen U, Nielsen-Kudsk JE, Mellemkjaer S, et al. Wave Intensity Analysis Provides Novel Insights Into Pulmonary Arterial Hypertension and Chronic Thromboembolic Pulmonary Hypertension. J Am Heart Assoc. 2017;6i:e006679.CrossRefGoogle Scholar
  50. 50.
    Su J, Logan CC, Hughes AD, Parker KH, Dhutia NM, Danielsen CC, et al. Impact of chronic hypoxia on proximal pulmonary artery wave propagation and mechanical properties in rats. Am J Physiol Heart Circ Physiol. 2018;314:H1264–78.  https://doi.org/10.1152/ajpheart.00695.2017.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Vachiéry JL, Adir Y, Barberà JA, Champion H, Coghlan JG, Cottin V, et al. Pulmonary hypertension due to left heart diseases. J Am Coll Cardiol. 2014;62:D100–8.CrossRefGoogle Scholar
  52. 52.
    Rain S, Bos Dda S, Handoko ML, Westerhof N, Stienen G, Ottenheijm C, et al. Protein changes contributing to right ventricular cardiomyocyte diastolic dysfunction in pulmonary arterial hypertension. J Am Heart Assoc. 2014;3:e000716.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Vonk Noordegraaf A, Westerhof BE, Westerhof N. The relationship between the right ventricle and its load in pulmonary hypertension. J Am Coll Cardiol. 2017;69:236–43. ReviewCrossRefPubMedGoogle Scholar
  54. 54.
    Marcus JT, Gan CT, Zwanenburg JJ, Boonstra A, Allaart CP, Götte MJ, et al. Interventricular mechanical asynchrony in pulmonary arterial hypertension: left-to-right delay in peak shortening is related to right ventricular overload and left ventricular underfilling. J Am Coll Cardiol. 2008;51:750–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nicolaas Westerhof
    • 1
  • Nikolaos Stergiopulos
    • 2
  • Mark I. M. Noble
    • 3
  • Berend E. Westerhof
    • 1
  1. 1.Department of Pulmonary Diseases, Amsterdam Cardiovascular SciencesVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Laboratory of Hemodynamics and Cardiovascular TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL), Institute of BioengineeringLausanneSwitzerland
  3. 3.Cardiovascular Medicine, Department of Medicine and TherapeuticsUniversity of AberdeenAberdeenUnited Kingdom

Personalised recommendations