Advertisement

Distributed Models and Tube Models

  • Nicolaas Westerhof
  • Nikolaos Stergiopulos
  • Mark I. M. Noble
  • Berend E. Westerhof
Chapter

Abstract

The distributed, or 1-D models of the systemic arterial system account for the morphology, oscillatory flow theory, and viscoelastic properties of the arterial wall. Pressures and flow wave shapes and wave travel compare favorably with in vivo data. The 3-D models account for flow profiles in the vessels. Patient-specific models have recently been developed. Distributed models allow the study of wave travel, reflections, the study of wave reflections at different locations in the arterial tree. Simpler models such as single tubes, or two tubes in parallel are discussed in the text. They are limited in their description of wave travel.

Keywords

Arterial models Single uniform tube model Tapered tube model Wave travel Reflection Amplification 

References

  1. 1.
    Westerhof N, Bosman F, De Vries CJ, Noordergraaf A. Analog studies of the human systemic arterial tree. J Biomech. 1969;2:121–43.CrossRefGoogle Scholar
  2. 2.
    Alastruey J. On the mechanics underlying the reservoir-excess separation in systemic arteries and their implications for pulse wave analysis. Cardiovasc Eng. 2010;10:176–89.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Reymond P, Bohraus Y, Perren F, Lazeyras F, Stergiopulos N. Validation of a patient-specific one-dimensional model of the systemic arterial tree. Am J Phys. 2011;301:H1173–82.Google Scholar
  4. 4.
    Olufsen MS. Structured tree outflow condition for blood flow in larger systemic arteries. Am J Phys. 1999;276:H257–68.Google Scholar
  5. 5.
    Guan D, Liang F, Gremaud PA. Comparison of the Windkessel model and structured-tree model applied to prescribe outflow boundary conditions for a one-dimensional arterial tree model. J Biomech. 2016;49:1583–92.CrossRefPubMedGoogle Scholar
  6. 6.
    Reymond P, Crosetto P, Deparis S, Quarteroni A, Stergiopulos N. Physiological simulation of blood flow in the aorta: comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models. Med Eng Phys. 2013;35:784–91.CrossRefPubMedGoogle Scholar
  7. 7.
    Xiao N, Alastruey J, Alberto FC. A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models. Int J Numer Method Biomed Eng. 2014;30:204–31.CrossRefPubMedGoogle Scholar
  8. 8.
    Westerhof N, Noordergraaf A. Arterial viscoelasticity: a generalized model. Effect on input impedance and wave travel in the systematic tree. J Biomech. 1970;3:357–79.CrossRefPubMedGoogle Scholar
  9. 9.
    O’Rourke MF, Avolio AP. Pulsatile flow and pressure in human systemic arteries: studies in man and in a multi-branched model of the human systemic arterial tree. Circ Res. 1980;46:363–72.CrossRefPubMedGoogle Scholar
  10. 10.
    Stergiopulos N, Young DF, Rogge TR. Computer simulation of arterial flow with applications to arterial and aortic stenosis. J Biomech. 1992;25:1477–88.CrossRefPubMedGoogle Scholar
  11. 11.
    Taylor MG. The input impedance of an assembly of randomly branching elastic tubes. Biophys J. 1966;6:29–51.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Taylor MG. Wave transmission through an assembly of randomly branching elastic tubes. Biophys J. 1966;6:697–716.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Remington JW, Wood EH. Formation of peripheral pulse contour in man. J Appl Physiol. 1956;9:433–42.CrossRefPubMedGoogle Scholar
  14. 14.
    Murgo JP, Westerhof N, Giolma JP, Altobelli SA. Aortic input impedance in normal man: relationship to pressure wave forms. Circulation. 1980;62:105–1116.CrossRefPubMedGoogle Scholar
  15. 15.
    Sipkema P, Westerhof N. Effective length of the arterial system. Ann Biomed Eng. 1975;3:296–307.CrossRefPubMedGoogle Scholar
  16. 16.
    Alastruey J, Hunt AA, Weinberg PD. Novel wave intensity analysis of arterial pulse wave propagation accounting for peripheral reflections. Int J Numer Method Biomed Eng. 2014;30:249–79.CrossRefPubMedGoogle Scholar
  17. 17.
    Hamilton WF, Dow P. An experimental study of the standing waves in the pulse propagated through the aorta. Am J Phys. 1939;125:48–59.Google Scholar
  18. 18.
    Westerhof BE, van den Wijngaard JP, Murgo JP, Westerhof N. Location of a reflection site is elusive: consequences for the calculation of aortic pulse wave velocity. Hypertension. 2008;52:478–83.CrossRefPubMedGoogle Scholar
  19. 19.
    Davies JE, Alastruey J, Francis DP, Hadjiloizou N, Whinnett ZI, Manisty CH, et al. Attenuation of wave reflection by wave entrapment creates a "horizon effect" in the human aorta. Hypertension. 2012;60:778–85.CrossRefPubMedGoogle Scholar
  20. 20.
    Tyberg JV, Bouwmeester JC, Parker KH, Shrive NG, Wang JJ. The case for the reservoir-wave approach. Int J Cardiol. 2014;172:299–306.CrossRefPubMedGoogle Scholar
  21. 21.
    O’Rourke MF. Pressure and flow waves in systemic arteries and the anatomical design of the arterial system. J Appl Physiol. 1967;23:139–49.CrossRefPubMedGoogle Scholar
  22. 22.
    O’Rourke MF. Vascular impedance in studies of arterial and cardiac function. Physiol Rev. 1982;62:570–623. ReviewCrossRefPubMedGoogle Scholar
  23. 23.
    Campbell KB, Burattini R, Bell DL, Kirkpatrick RD, Knowlen GG. Time-domain formulation of asymmetric T-tube model of the arterial system. Am J Phys. 1990;258:H1761–74.Google Scholar
  24. 24.
    Burattini R, Knowlen GG, Campbell KN. Two arterial reflecting sites may appear as one to the heart. Circ Res. 1991;68:85–99.CrossRefPubMedGoogle Scholar
  25. 25.
    Westerhof BE, Westerhof N. Magnitude and return time of the reflected wave: the effects of large artery stiffness and aortic geometry. J Hypertens. 2012;30:932–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Segers P, Verdonck P. Role of tapering in aortic wave reflection: hydraulic and mathematical model study. J Biomech. 2000;33:299–306.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nicolaas Westerhof
    • 1
  • Nikolaos Stergiopulos
    • 2
  • Mark I. M. Noble
    • 3
  • Berend E. Westerhof
    • 1
  1. 1.Department of Pulmonary Diseases, Amsterdam Cardiovascular SciencesVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Laboratory of Hemodynamics and Cardiovascular TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL), Institute of BioengineeringLausanneSwitzerland
  3. 3.Cardiovascular Medicine, Department of Medicine and TherapeuticsUniversity of AberdeenAberdeenUnited Kingdom

Personalised recommendations