Advertisement

The Arterial Windkessel

  • Nicolaas Westerhof
  • Nikolaos Stergiopulos
  • Mark I. M. Noble
  • Berend E. Westerhof
Chapter

Abstract

The Otto Frank’s arterial Windkessel consists of a peripheral resistance, the summed resistance of all small arteries, arterioles and capillaries, and a total arterial compliance the summed compliances of all arteries, mainly the aorta and conduit arteries. Later, after input impedance data became available, the model was extended to the three-element Windkessel by addition of the aortic characteristic impedance. The Windkessel model can help us to understand how the arterial system functions, it can be used as a realistic load in isolated heart studies, it can be used in modeling, and it can form the basis for estimating arterial system parameters. The Windkessel is a ‘lumped model’ and does not take in account pressure and flow waves.

Keywords

Two-element Windkessel Three-element Windkessel Exponential aortic pressure decay Methods to derive total arterial compliance Hypertension Age 

References

  1. 1.
    Westerhof N, Lankhaar JW, Westerhof BE. The arterial Windkessel. Med Biol Eng Comput. 2009;47:131–41.CrossRefPubMedGoogle Scholar
  2. 2.
    Westerhof N, Elzinga G, Sipkema P. An artificial system for pumping hearts. J Appl Physiol. 1971;31:776–81.CrossRefPubMedGoogle Scholar
  3. 3.
    Stergiopulos N, Westerhof BE, Westerhof N. Total arterial inertance as the fourth element of the windkessel model. Am J Phys. 1999;276:H81–8.Google Scholar
  4. 4.
    Elzinga G, Westerhof N. Pressure and flow generated by the left ventricle against different impedances. Circ Res. 1973;32:178–86.CrossRefPubMedGoogle Scholar
  5. 5.
    Segers P, Rietzschel ER, De Buyzere ML, Vermeersch SJ, De Bacquer D, Van Bortel LM, et al. Noninvasive (input) impedance, pulse wave velocity, and wave reflection in healthy middle-aged men and women. Hypertension. 2007;49:1248–55.CrossRefPubMedGoogle Scholar
  6. 6.
    Westerhof N, Westerhof BE. A review of methods to determine the functional arterial parameters stiffness and resistance. J Hypertens. 2013;31:1769–75.CrossRefPubMedGoogle Scholar
  7. 7.
    Stergiopulos N, Meister J-J, Westerhof N. Evaluation of methods for estimating total arterial compliance. Am J Phys. 1995;268:H1540–8.Google Scholar
  8. 8.
    Hamilton WF, Remington JW. The measurement of the stroke volume from the pressure pulse. Am J Phys. 1947;148:14–24.Google Scholar
  9. 9.
    Randall OS, Esler MD, Calfee RV, Bulloch GF, Maisel AS, Culp B. Arterial compliance in hypertension. N Z J Med. 1976;6:49–59.CrossRefGoogle Scholar
  10. 10.
    Chemla D, Hébert JL, Coirault C, Zamani K, Suard I, Colin P, et al. Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am J Phys. 1998;274:H500–5.CrossRefGoogle Scholar
  11. 11.
    Segers P, Brimioulle S, Stergiopulos N, Westerhof N, Naeije R, Maggiorini M, et al. Pulmonary arterial compliance in dogs and pigs: the three-element windkessel model revisited. Am J Phys. 1999;277:H725–31.Google Scholar
  12. 12.
    Murgo JP, Westerhof N, Giolma JP, Altobelli SA. Manipulation of ascending aortic pressure and flow wave reflections with the Valsalva maneuver: relationship to input impedance. Circulation. 1981;63:122–32.CrossRefPubMedGoogle Scholar
  13. 13.
    Liu Z, Brin KP, Yin FCP. Estimation of total arterial compliance: and improved method and evaluation of current methods. Am J Phys. 1986;251:H588–600.CrossRefGoogle Scholar
  14. 14.
    Self DA, Ewert RD, Swope RP, Latham RD. Beat-to-beat estimation of peripheral resistance and arterial compliance during +Gz centrifugation. Aviat Space Environ Med. 1994;65:396–403.PubMedGoogle Scholar
  15. 15.
    Stergiopulos N, Meister J-J, Westerhof N. Simple and accurate way for estimating total and segmental arterial compliance: the pulse pressure method. Ann Biomed Eng. 1994;22:392–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Toorop GP, Westerhof N, Elzinga G. Beat-to beat estimation of peripheral resistance and arterial compliance during pressure transients. Am J Phys. 1987;252:H1275–83.Google Scholar
  17. 17.
    Segers P, Stergiopulos N, Westerhof N. Quantification of the contribution of cardiac and arterial remodeling in hypertension. Hypertension. 2000;36:760–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Maksuti E, Westerhof N, Westerhof BE, Broomé M, Stergiopulos N. Contribution of the arterial system and the heart to blood pressure during normal aging – a simulation study. PLoS One. 2016;11:e0157493.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nicolaas Westerhof
    • 1
  • Nikolaos Stergiopulos
    • 2
  • Mark I. M. Noble
    • 3
  • Berend E. Westerhof
    • 1
  1. 1.Department of Pulmonary Diseases, Amsterdam Cardiovascular SciencesVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Laboratory of Hemodynamics and Cardiovascular TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL), Institute of BioengineeringLausanneSwitzerland
  3. 3.Cardiovascular Medicine, Department of Medicine and TherapeuticsUniversity of AberdeenAberdeenUnited Kingdom

Personalised recommendations