Advertisement

Coronary Hemodynamics

  • Nicolaas Westerhof
  • Nikolaos Stergiopulos
  • Mark I. M. Noble
  • Berend E. Westerhof
Chapter

Abstract

The relation between mean coronary flow and mean perfusion pressure is under the influence of autonomic, neural and hormonal control. Autoregulation causes the rather constant flow for the physiological range of pressures, and the change in flow with cardiac metabolism. Autonomic coronary flow regulation consists of three mechanisms: metabolic, myogenic and endothelium mediated vasoactivity. The so-called instantaneous pressure-flow relations are obtained in diastole to avoid the effect of cardiac muscle contraction, and describe the state of the coronary bed. Cardiac contraction reduces coronary arterial inflow and augments venous outflow in systole, the ‘intramyocardial pump’. This effect results from three mechanisms: The direct effect of increased muscle stiffening (varying elastance), the indirect effect of increased ventricular pressure producing an intramyocardial (interstitial) pressure in the ventricular wall, and the thickening of the muscle during shortening contractions at the expense of vascular lumen. Cardiac contraction is the main reason why the subendocardial layers are most prone to ischemia.

Keywords

Autoregulation Instantaneous pressure-flow relation Intramyocardial pump Muscle stiffening Intramyocardial pressure Muscle thickening Ischemia Transmural perfusion Waterfall 

References

  1. 1.
    Hoffman JIE, Spaan JAE. Pressure-flow relations in the coronary circulation. Physiol Rev. 1990;70:331–90.CrossRefGoogle Scholar
  2. 2.
    Spaan JA. Coronary blood flow. Dordrecht: Kluwer; 1991.CrossRefGoogle Scholar
  3. 3.
    Westerhof N, Boer C, Lamberts RR, Sipkema P. Cross-talk between cardiac muscle and coronary vasculature. Physiol Rev. 2006;86:1263–308.CrossRefPubMedGoogle Scholar
  4. 4.
    Dankelman J, Spaan JAE, van der Ploeg CPB, Vergroesen I. Dynamic response of the coronary circulation to a rapid change in perfusion in the anaesthetised goat. J Physiol Lond. 1989;419:703–15.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Vergroesen I, Noble MIM, Wieringa PA, Spaan JAE. Quantification of O2 consumption and arterial pressure as independent determinants of coronary flow. Am J Phys. 1987;252:H545–53.Google Scholar
  6. 6.
    Drake-Holland AJ, Laird JD, Noble MIM, Spaan JAE, Vergroesen I. Oxygen and coronary vascular resistance during autoregulation and metabolic vasodilation in the dog. J Physiol. 1984;348:285–300.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kuo L, Davis MJ, Chilian WM. Longitudinal gradients for endothelium-dependent and -independent vascular responses in the coronary microcirculation. Circulation. 1995;92:518–25.CrossRefPubMedGoogle Scholar
  8. 8.
    Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev. 2008;88:1009–86.CrossRefPubMedGoogle Scholar
  9. 9.
    Bellamy RF. Diastolic coronary artery pressure-flow relations in the dog. Circ Res. 1978;43:92–101.CrossRefPubMedGoogle Scholar
  10. 10.
    Van Dijk LC, Krams R, Sipkema P, Westerhof N. Changes in coronary pressure-flow relation after transition from blood to Tyrode. Am J Phys. 1988;255:H476–82.Google Scholar
  11. 11.
    Sherman IA. Interfacial tension effects in the microvasculature. Microvasc Res. 1981;22:296–307.CrossRefPubMedGoogle Scholar
  12. 12.
    Sipkema P, Westerhof N. Mechanics of a thin walled collapsible microtube. Ann Biomed Eng. 1989;17:203–17.CrossRefPubMedGoogle Scholar
  13. 13.
    Spaan JA. Coronary diastolic pressure-flow relation and zero flow pressure explained on the basis of intramyocardial compliance. Circ Res. 1985;56:293–309.CrossRefPubMedGoogle Scholar
  14. 14.
    Gregg DE, Green HD. Registration and interpretation of normal phasic inflow into the left coronary artery by an improved differential manometric method. Am J Phys. 1940;130:114–25.Google Scholar
  15. 15.
    Krams R, van Haelst ACTA, Sipkema P, Westerhof N. Can coronary systolic-diastolic flow differences be predicted by left ventricular pressure of by time-varying intramyocardial elastance? Basic Res Cardiol. 1989;84:149–59.CrossRefPubMedGoogle Scholar
  16. 16.
    Downey JM, Kirk ES. Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res. 1975;36:753–60.CrossRefPubMedGoogle Scholar
  17. 17.
    Spaan JA, Breuls NPW, Laird JD. Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res. 1981;49:584–93.CrossRefPubMedGoogle Scholar
  18. 18.
    Vis MA, Bovendeerd PH, Sipkema P, Westerhof N. Effect of ventricular contraction, pressure, and wall stretch on vessels at different locations in the wall. Am J Phys. 1997;272:H2963–75.Google Scholar
  19. 19.
    Sipkema P, Takkenberg JJM, Zeeuwe PEM, Westerhof N. Left coronary pressure-flow relations of the beating and arrested rabbit heart at different ventricular volumes. Cardiovasc Res. 1998;40:88–95.CrossRefPubMedGoogle Scholar
  20. 20.
    Mihailescu LS, Abel FL. Intramyocardial pressure gradients in working and nonworking isolated cat hearts. Am J Phys. 1994;266:H1233–41.Google Scholar
  21. 21.
    Westerhof N. Physiological hypothesis. Intramyocardial pressure. Basic Res Cardiol. 1990;85:105–19.CrossRefPubMedGoogle Scholar
  22. 22.
    Yada T, Hiramatsu O, Kimura A, Goto M, Ogasawara Y, Tsujioka K, et al. In vivo observation of subendocardial microvessels in the beating porcine heart using a needle-probe videomicroscope with a CCD camera. Circ Res. 1993;72:939–46.CrossRefPubMedGoogle Scholar
  23. 23.
    Vis MA, Sipkema P, Westerhof N. Compression of intramyocardial arterioles during cardiac contraction is attenuated by accompanying venules. Am J Phys. 1997;273:H1002–11.Google Scholar
  24. 24.
    Chilian WM. Microvascular pressures and resistances in the left ventricular subendocardium and subepicardium. Circ Res. 1991;69:561–70.CrossRefPubMedGoogle Scholar
  25. 25.
    Bassingthwaighte JB, King RB, Roger SA. Fractal nature of regional myocardial blood flow heterogeneity. Circ Res. 1989;65:578–90.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Danad I, Raijmakers PG, Harms HJ, Heymans MW, van Royen N, Lubberink M, et al. Impact of anatomical and functional severity of coronary atherosclerotic plaques on the transmural perfusion gradient: a [15O]H2O PET study. Eur Heart. 2014;35:2094–105.CrossRefGoogle Scholar
  27. 27.
    Lamberts RR, Van Rijen MH, Sipkema P, Fransen P, Sys SU, Westerhof N. Coronary perfusion and muscle lengthening increase cardiac contraction: different stretch-triggered mechanisms. Am J Physiol Heart Circ Physiol. 2002;283:H1515–22.CrossRefPubMedGoogle Scholar
  28. 28.
    Brutsaert DL. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev. 2003;83:59–115.CrossRefPubMedGoogle Scholar
  29. 29.
    Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62:263–71. Review.CrossRefPubMedGoogle Scholar
  30. 30.
    Ten Velden GHM, Westerhof N, Elzinga G. Left ventricular energetics: heat loss and temperature distribution in the canine myocardium. Circ Res. 1982;50:63–73.CrossRefPubMedGoogle Scholar
  31. 31.
    Hoffman JIE, Buckberg JD. Myocardial supply:demand ratio – a critical review. Am J Cardiol. 1978;41:327–32.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nicolaas Westerhof
    • 1
  • Nikolaos Stergiopulos
    • 2
  • Mark I. M. Noble
    • 3
  • Berend E. Westerhof
    • 1
  1. 1.Department of Pulmonary Diseases, Amsterdam Cardiovascular SciencesVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Laboratory of Hemodynamics and Cardiovascular TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL), Institute of BioengineeringLausanneSwitzerland
  3. 3.Cardiovascular Medicine, Department of Medicine and TherapeuticsUniversity of AberdeenAberdeenUnited Kingdom

Personalised recommendations