Advertisement

Cardiac Muscle Mechanics

  • Nicolaas Westerhof
  • Nikolaos Stergiopulos
  • Mark I. M. Noble
  • Berend E. Westerhof
Chapter

Abstract

Relations between force and length in the relaxed state, diastole, and active state, systole, are important parameters standing at the basis of diastolic and systolic heart function. Calcium entry and removal in and out the muscle cell play a major role in muscle force. The difference between the systolic and diastolic force is developed force. Force is expressed relative to cross-sectional area of the muscle and called tension (stress would be a better term). The force-velocity relation, shows that velocity of contraction decreases when force increases. Stress relates to pressure (Chap. 9).

Keywords

Cardiac muscle Calcium Force-length relation Force-velocity relation Sliding filament model Titin 

References

  1. 1.
    Fukuda N, Granzier HL. Titin/connectin-based modulation of the Frank-Starling mechanism of the heart. J Muscle Res Cell Motil. 2005;26:319–23. Review.CrossRefPubMedGoogle Scholar
  2. 2.
    Kentish JC, ter Keurs HEDJ, Ricciardi L, Bucx JJJ, Noble MIM. Cardiac muscle mechanics: comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle. Circ Res. 1986;58:755–68.CrossRefPubMedGoogle Scholar
  3. 3.
    Huisman RM, Elzinga G, Westerhof N, Sipkema P. Comparison of models used to calculate left ventricular wall force. Cardiovasc Res. 1980;14:142–53.CrossRefPubMedGoogle Scholar
  4. 4.
    Daniels M, Noble MIM, ter Keurs HEDJ, Wohlfart B. Force and velocity of sarcomere shortening in rat cardiac muscle: relationship of force, sarcomere length, Ca++ and time. J Physiol. 1984;355:367–81.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    van der Velden J, Klein LJ, van der Bijl M, Huybregts MA, Stooker W, Witkop J, et al. Isometric tension development and its calcium sensitivity in skinned myocyte-sized preparations from different regions of the human heart. Cardiovasc Res. 1999;42:706–19.CrossRefPubMedGoogle Scholar
  6. 6.
    Herzog W, Lee EJ, Rassier DE. Residual force enhancement in skeletal muscle. J Physiol. 2007;578:613–5. Holohan SJ, Marston SB. IEEE Proc Nanobiotechnol 2005;152:113–20CrossRefGoogle Scholar
  7. 7.
    Liu X, Pollack GH. Stepwise sliding of single actin and myosin filaments. Biophys J. 2004;86:353–8.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kishino A, Yanagida T. Force measurements by micromanipulation of a single actin filament by glass needles. Nature. 1988;334(6177):74–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Holohan SJ, Marston SB. Force-velocity relationship of single actin filament interacting with immobilised myosin measured by electromagnetic technique. IEEE Proc Nanobiotechnol. 2005;152:113–20.CrossRefGoogle Scholar
  10. 10.
    Sun YB, Lou F, Irving M. Calcium- and myosin-dependent changes in troponin structure during activation of heart muscle. J Physiol. 2009;587(Pt 1):155–63.CrossRefPubMedGoogle Scholar
  11. 11.
    Granzier HL, Irving TC. Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys J. 1995;68:1027–44.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Drake-Holland AJ, Lee JA, Hynd J, Clarke SB, Noble MI. Beneficial effect of the calcium-sensitizing drug EMD 57033 in a canine model of dilated heart failure. Clin Sci (Lond). 1997;93:213–8.CrossRefGoogle Scholar
  13. 13.
    Golob M, Moss RL, Chesler NC. Cardiac tissue structure, properties, and performance: a materials science perspective. Ann Biomed Eng. 2014;42:2003–13.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zile MR, Baicu CF, Ikonomidis JS, Stroud RE, Nietert PJ, Bradshaw AD, et al. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation. 2015;131:1247–59.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nicolaas Westerhof
    • 1
  • Nikolaos Stergiopulos
    • 2
  • Mark I. M. Noble
    • 3
  • Berend E. Westerhof
    • 1
  1. 1.Department of Pulmonary Diseases, Amsterdam Cardiovascular SciencesVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Laboratory of Hemodynamics and Cardiovascular TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL), Institute of BioengineeringLausanneSwitzerland
  3. 3.Cardiovascular Medicine, Department of Medicine and TherapeuticsUniversity of AberdeenAberdeenUnited Kingdom

Personalised recommendations