Wave Travel and Reflection

  • Nicolaas Westerhof
  • Nikolaos Stergiopulos
  • Mark I. M. Noble
  • Berend E. Westerhof


Both pressure and flow are travelling waves: they vary in time over the cardiac cycle and depend on location. The time delay Δt of pressure, flow or diameter waves allows calculation of Pulse Wave Velocity, PWV = distance/Δt. The pulse pressure (systolic-diastolic pressure) increases towards the periphery, called amplification, and results from wave reflections. The different wave shapes of pressure and flow also result from wave reflection. Reflections occur at all changes in arterial geometry: size, bifurcations, and changes in wall properties. Pressure and flow at any location can be separated into their forward and reflected components. Reflections of pressure and flow are equal in magnitude but ‘inversed’: when reflection is positive for pressure, it is negative for flow.


Wave propagation Wave separation Local reflection coefficient Global reflection coefficient Forward and backward waves Pressure transmission Pressure amplification Characteristic impedance 


  1. 1.
    Nichols WW, O’Rourke MF, Charalambos Vlachopoulos C. McDonald’s blood flow in arteries. 6th ed. Boca Raton: CRC Press Taylor & Francis; 2011.Google Scholar
  2. 2.
    Milnor WR. Hemodynamics. 2nd ed. Baltimore & London: Williams & Wilkins.; 1989.Google Scholar
  3. 3.
    Womersley JR. Oscillatory flow in arteries. II. The reflection of the pulse wave at junctions and rigid inserts in the arterial system. Phys Med Biol. 1958;2:313–23.CrossRefPubMedGoogle Scholar
  4. 4.
    Westerhof N, Sipkema P, van den Bos GC, Elzinga G. Forward and backward waves in the arterial system. Cardiovasc Res. 1972;6:648–56.CrossRefPubMedGoogle Scholar
  5. 5.
    Sipkema P, Westerhof N. Effective length of the arterial system. Ann Biomed Eng. 1975;3:296–307.CrossRefPubMedGoogle Scholar
  6. 6.
    Westerhof BE, van den Wijngaard JP, Murgo JP, Westerhof N. Location of a reflection site is elusive: consequences for the calculation of aortic pulse wave velocity. Hypertension. 2008;52:478–83.CrossRefPubMedGoogle Scholar
  7. 7.
    Davies JE, Alastruey J, Francis DP, Hadjiloizou N, Whinnett ZI, Manisty CH, et al. Attenuation of wave reflection by wave entrapment creates a “horizon effect” in the human aorta. Hypertension. 2012;60:778–85.CrossRefPubMedGoogle Scholar
  8. 8.
    Dujardin JP, Stone DN. Characteristic impedance of the proximal aorta determined in the time and frequency domain: a comparison. Med Biol Eng Comput. 1981;19:565–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Mynard JP, Smolich JJ. Wave potential and the one-dimensional windkessel as a wave-based paradigm of diastolic arterial hemodynamics. Am J Physiol Heart Circ Physiol. 2014;307:H307–18.CrossRefPubMedGoogle Scholar
  10. 10.
    Mynard JP, Smolich JJ. Novel wave power analysis linking pressure-flow waves, wave potential, and the forward and backward components of hydraulic power. Am J Physiol Heart Circ Physiol. 2016;310:H1026–38.CrossRefPubMedGoogle Scholar
  11. 11.
    Davies JE, Baksi J, Francis DP, Hadjiloizou N, Whinnett ZI, Manisty CH, et al. The arterial reservoir pressure increases with aging and is the major determinant of the aortic augmentation index. Am J Physiol Heart Circ Physiol. 2010;298:H580–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Hamilton WF, Dow P. An experimental study of the standing waves in the pulse propagated through the aorta. Am J Phys. 1939;125:48–59.Google Scholar
  13. 13.
    Luchsinger PC, Snell RE, Patel DJ, Fry DL. Instantaneous pressure distribution along the human aorta. Circ Res. 1964;15:503–10.CrossRefPubMedGoogle Scholar
  14. 14.
    Latham RD, Westerhof N, Sipkema P, Rubal BJ, Reuderink P, Murgo JP. Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures. Circulation. 1985;72:1257–69.CrossRefPubMedGoogle Scholar
  15. 15.
    O’Rourke MF, Blazek JV, Morreels CL Jr, Krovetz LJ. Pressure wave transmission along the human aorta. Changes with age and in arterial degenerative disease. Circ Res. 1968;23:567–79.CrossRefPubMedGoogle Scholar
  16. 16.
    Bos WJ, Verrij E, Vincent HH, Westerhof BE, Parati G, van Montfrans GA. How to assess mean blood pressure properly at the brachial artery level. J Hypertens. 2007;25:751–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Kelly R, Fitchett D. Noninvasive determination of aortic input impedance and external left ventricular power output: a validation and repeatability study of a new technique. J Am Coll Cardiol. 1992;20:952–63.CrossRefPubMedGoogle Scholar
  18. 18.
    Kouchoukos NT, Sheppard LC, McDonald DA. Estimation of stroke volume in the dog by a pulse contour method. Circ Res. 1970;26:611–23.CrossRefPubMedGoogle Scholar
  19. 19.
    Mitchell GF, Lacourcière Y, Ouellet JP, Izzo JL Jr, Neutel J, Kerwin LJ, et al. Determinants of elevated pulse pressure in middle-aged and older subjects with uncomplicated systolic hypertension: the role of proximal aortic diameter and the aortic pressure-flow relationship. Circulation. 2003;108:1592–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Perktold K, Rappitsch G. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J Biomech. 1995;28:845–56.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nicolaas Westerhof
    • 1
  • Nikolaos Stergiopulos
    • 2
  • Mark I. M. Noble
    • 3
  • Berend E. Westerhof
    • 1
  1. 1.Department of Pulmonary Diseases, Amsterdam Cardiovascular SciencesVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Laboratory of Hemodynamics and Cardiovascular TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL), Institute of BioengineeringLausanneSwitzerland
  3. 3.Cardiovascular Medicine, Department of Medicine and TherapeuticsUniversity of AberdeenAberdeenUnited Kingdom

Personalised recommendations