Advertisement

Elasticity

  • Nicolaas Westerhof
  • Nikolaos Stergiopulos
  • Mark I. M. Noble
  • Berend E. Westerhof
Chapter

Abstract

The Youngs modulus of elasticity is a material constant. A strip of material subjected to a force will lengthen. Force F, over cross-sectional area, A = ¼ πd02, is stress, σ = F/A, and the relative length change, ε = Δl/l0, is the strain. If the stress-strain relationship is linear, the material obeys Hooke’s law and the slope of the relation is called the Youngs modulus of elasticity, E. The stress-strain relation of biological tissues is curved, and the local slope is the incremental elastic modulus, Einc, which is strain (or stress) dependent. The Youngs modulus of elasticity is actually a stiffness modulus.

Keywords

Youngs modulus Hooke Incremental modulus Stress-strain relation Nonlinear 

References

  1. 1.
    Noble MIM. The diastolic viscous properties of cat papillary muscle. Circ Res. 1977;40:287–92.Google Scholar
  2. 2.
    Westerhof N, Noordergraaf A. Arterial elasticity: a generalized model. Effect on input impedance and wave travel in the systemic arterial tree. J Biomech. 1970;3:357–79.CrossRefPubMedGoogle Scholar
  3. 3.
    Fung YC. Elasticity of soft tissues in simple elongation. Am J Phys. 1967;28:1532–44.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nicolaas Westerhof
    • 1
  • Nikolaos Stergiopulos
    • 2
  • Mark I. M. Noble
    • 3
  • Berend E. Westerhof
    • 1
  1. 1.Department of Pulmonary Diseases, Amsterdam Cardiovascular SciencesVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Laboratory of Hemodynamics and Cardiovascular TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL), Institute of BioengineeringLausanneSwitzerland
  3. 3.Cardiovascular Medicine, Department of Medicine and TherapeuticsUniversity of AberdeenAberdeenUnited Kingdom

Personalised recommendations