Advertisement

Computer-Modeling of Stars

  • Matthias Liebendörfer
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 453)

Abstract

A human being experiences his immediate environment on the scale of meters, seconds and grams. These are also the natural scales of his actions. Thus, as soon as he starts to explore the laws of physics, he can easily move around masses at the scale of grams, objects on the scale of meters and perform experiments on the scale of seconds. On these scales, the experimentator has full control on the setup of an experiment and direct access to all degrees of freedom during the evolution of the experiment. This direct access is lost in experiments that explore the physics on scales that are many orders of magnitude smaller. The experimentator still has full control on the setup, for example, by putting a specific target into a properly designed accelerator beam. But the measurements are then limited to the far field, where only a superposition of the effects of the microscopic physics becomes detectable. The large number of degrees of freedom that may be present in the microscopic physics must be explored by clever variations of the experimental setup. Most astronomical observations are obviously also taken from the far field, because the distance to the observed source is so much larger than the length scale of the source. Hence, many degrees of freedom of the dynamics on the length scale of the source are only indirectly accessible for the observer. Moreover, it is not possible to efficiently manipulate and prepare matter outside the solar system in order to produce systematic variations in the setup as in terrestrial experiments.

References

  1. Aufderheide MB, Baron E, Thielemann F (1991) Shock waves and nucleosynthesis in type II supernovae. Astrophys J 370:630–642. https://doi.org/10.1086/169849 ADSCrossRefGoogle Scholar
  2. Bethe HA (1990) Supernova mechanisms. Rev Mod Phys 62:801–866.  https://doi.org/10.1103/RevModPhys.62.801 ADSCrossRefGoogle Scholar
  3. Bethe HA, Wilson JR (1985) Revival of a stalled supernova shock by neutrino heating. Astrophys J 295:14–23. https://doi.org/10.1086/163343 ADSCrossRefGoogle Scholar
  4. Bisnovatyi-Kogan GS, Moiseenko SG, Ardelyan NV (2008) Different magneto-rotational supernovae. Astron Rep 52:997–1008. https://doi.org/10.1134/S1063772908120056 ADSCrossRefGoogle Scholar
  5. Blondin JM, Lufkin EA (1993) The piecewise-parabolic method in curvilinear coordinates. Astrophys J Suppl 88:589–594. https://doi.org/10.1086/191834 ADSCrossRefGoogle Scholar
  6. Bruenn SW (1985) Stellar core collapse - numerical model and infall epoch. Astrophys J Suppl 58:771–841. https://doi.org/10.1086/191056 ADSCrossRefGoogle Scholar
  7. Bruenn SW, De Nisco KR, Mezzacappa A (2001) General relativistic effects in the core collapse supernova mechanism. Astrophys J 560:326–338. https://doi.org/10.1086/322319, arXiv:astro-ph/0101400 ADSCrossRefGoogle Scholar
  8. Bruenn SW, Mezzacappa A, Hix WR, Blondin JM, Marronetti P, Messer OEB, Dirk CJ, Yoshida S (2009) 2D and 3D core-collapse supernovae simulation results obtained with the CHIMERA code. J Phys Conf Ser 180(1):012018. https://doi.org/10.1088/1742--6596/180/1/012018 CrossRefGoogle Scholar
  9. Brun AS, Miesch MS, Toomre J (2004) Global-scale turbulent convection and magnetic dynamo action in the solar envelope. Astrophys J 614:1073–1098. https://doi.org/10.1086/423835, arXiv:astro-ph/0610073 ADSCrossRefGoogle Scholar
  10. Burrows A, Livne E, Dessart L, Ott CD, Murphy J (2007) Features of the acoustic mechanism of core-collapse supernova explosions. Astrophys J 655:416–433. https://doi.org/10.1086/509773, arXiv:astro-ph/0610175 ADSCrossRefGoogle Scholar
  11. Calder AC, Fryxell B, Plewa T, Rosner R, Dursi LJ, Weirs VG, Dupont T, Robey HF, Kane JO, Remington BA, Drake RP, Dimonte G, Zingale M, Timmes FX, Olson K, Ricker P, MacNeice P, Tufo HM (2002) On validating an astrophysical simulation code. Astrophys J Suppl 143:201–229. https://doi.org/10.1086/342267, arXiv:astro-ph/0206251 ADSCrossRefGoogle Scholar
  12. Castor JI (1972) Radiative transfer in spherically symmetric flows. Astrophys J 178:779–792. https://doi.org/10.1086/151834 ADSCrossRefGoogle Scholar
  13. Chandrasekhar S (1967) An introduction to the study of stellar structure. Dover, New YorkzbMATHGoogle Scholar
  14. Colgate SA, White RH (1966) The hydrodynamic behavior of supernovae explosions. Astrophys J 143:626. https://doi.org/10.1086/148549 ADSCrossRefGoogle Scholar
  15. Dessart L, Burrows A, Ott CD, Livne E, Yoon S, Langer N (2006) Multidimensional simulations of the accretion-induced collapse of white dwarfs to neutron stars. Astrophys J 644:1063–1084. https://doi.org/10.1086/503626, arXiv:astro-ph/0601603 ADSCrossRefGoogle Scholar
  16. Dotter A, Paxton B (2009) Evolutionary implications of the new triple-α nuclear reaction rate for low mass stars. Astron Astrophys 507:1617–1619. https://doi.org/10.1051/0004-6361/200912998, 0905.2397 ADSCrossRefGoogle Scholar
  17. Eggenberger P, Meynet G, Maeder A, Hirschi R, Charbonnel C, Talon S, Ekström S (2008) The Geneva stellar evolution code. Astrophys Space Sci 316:43–54. https://doi.org/10.1007/s10509-007-9511-y ADSCrossRefGoogle Scholar
  18. Foglizzo T, Galletti P, Scheck L, Janka H (2007) Instability of a stalled accretion shock: evidence for the advective-acoustic cycle. Astrophys J 654:1006–1021. https://doi.org/10.1086/509612, arXiv:astro-ph/0606640 ADSCrossRefGoogle Scholar
  19. Fröhlich C, Hauser P, Liebendörfer M, Martínez-Pinedo G, Thielemann F, Bravo E, Zinner NT, Hix WR, Langanke K, Mezzacappa A, Nomoto K (2006a) Composition of the innermost core-collapse supernova ejecta. Astrophys J 637:415–426. https://doi.org/10.1086/498224, arXiv:astro-ph/0410208 ADSCrossRefGoogle Scholar
  20. Fröhlich C, Martínez-Pinedo G, Liebendörfer M, Thielemann F, Bravo E, Hix WR, Langanke K, Zinner NT (2006b) Neutrino-induced nucleosynthesis of A>64 nuclei: the νp process. Phys Rev Lett 96(14):142502.  https://doi.org/10.1103/PhysRevLett.96.142502, arXiv:astro-ph/0511376
  21. Fryxell B, Olson K, Ricker P, Timmes FX, Zingale M, Lamb DQ, MacNeice P, Rosner R, Truran JW, Tufo H (2000) FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys J Suppl 131:273–334. https://doi.org/10.1086/317361 ADSCrossRefGoogle Scholar
  22. Giacomazzo B, Rezzolla L (2007) WhiskyMHD: a new numerical code for general relativistic magnetohydrodynamics. Classical Quantum Gravity 24:235. https://doi.org/10.1088/0264-9381/24/12/S16, arXiv:gr-qc/0701109 ADSMathSciNetCrossRefGoogle Scholar
  23. Hammer NJ, Janka HT, Müller E (2010) Three-dimensional simulations of mixing instabilities in supernova explosions. Astrophys J 714:1371–1385. https://doi.org/10.1088/0004-637X/714/2/1371, 0908.3474 ADSCrossRefGoogle Scholar
  24. Henyey LG, Wilets L, Böhm KH, Lelevier R, Levee RD (1959) A method for atomic computation of stellar evolution. Astrophys J 129:628. https://doi.org/10.1086/146661 ADSMathSciNetCrossRefGoogle Scholar
  25. Herant M, Benz W, Hix WR, Fryer CL, Colgate SA (1994) Inside the supernova: a powerful convective engine. Astrophys J 435:339–361. https://doi.org/10.1086/174817, arXiv:astro-ph/9404024 ADSCrossRefGoogle Scholar
  26. Hix WR, Khokhlov AM, Wheeler JC, Thielemann F (1998) The quasi-equilibrium-reduced alpha -network. Astrophys J 503:332. https://doi.org/10.1086/305968, arXiv:astro-ph/9805095 ADSCrossRefGoogle Scholar
  27. Hoffman RD, Müller B, Janka H (2008) Nucleosynthesis in O-Ne-Mg supernovae. Astrophys J 676:L127–L130. https://doi.org/10.1086/587621, 0712.4257 ADSCrossRefGoogle Scholar
  28. Käppeli R, Whitehouse SC, Scheidegger S, Pen UL, Liebendörfer M (2011) FISH: a three-dimensional parallel magnetohydrodynamics code for astrophysical applications. Astrophys J Suppl 195:20. https://doi.org/10.1088/0067-0049/195/2/20, 0910.2854 ADSCrossRefGoogle Scholar
  29. Kifonidis K, Plewa T, Janka H, Müller E (2003) Non-spherical core collapse supernovae. I. Neutrino-driven convection, Rayleigh-Taylor instabilities, and the formation and propagation of metal clumps. Astron Astrophys 408:621–649. https://doi.org/10.1051/0004-6361:20030863, arXiv:astro-ph/0302239 ADSCrossRefGoogle Scholar
  30. Kitaura FS, Janka H, Hillebrandt W (2006) Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae. Astron Astrophys 450:345–350. https://doi.org/10.1051/0004-6361:20054703, arXiv:astro-ph/0512065 ADSCrossRefGoogle Scholar
  31. Langer N, Fliegner J, Heger A, Woosley SE (1997) Nucleosynthesis in rotating massive stars. Nucl Phys A 621:457–466. https://doi.org/10.1016/S0375-9474(97)00290-X ADSCrossRefGoogle Scholar
  32. Liebendörfer M, Mezzacappa A, Messer OEB, Martinez-Pinedo G, Hix WR, Thielemann F (2003) The neutrino signal in stellar core collapse and postbounce evolution. Nucl Phys A 719:144. https://doi.org/10.1016/S0375-9474(03)00984-9, arXiv:astro-ph/0211329 ADSCrossRefGoogle Scholar
  33. Liebendörfer M, Messer OEB, Mezzacappa A, Bruenn SW, Cardall CY, Thielemann F (2004) A finite difference representation of neutrino radiation hydrodynamics in spherically symmetric general relativistic spacetime. Astrophys J Suppl 150:263–316. https://doi.org/10.1086/380191, arXiv:astro-ph/0207036 ADSCrossRefGoogle Scholar
  34. Liebendörfer M, Rampp M, Janka H, Mezzacappa A (2005) Supernova simulations with Boltzmann neutrino transport: a comparison of methods. Astrophys J 620:840–860. https://doi.org/10.1086/427203, arXiv:astro-ph/0310662 ADSCrossRefGoogle Scholar
  35. Liebendörfer M, Whitehouse SC, Fischer T (2009) The isotropic diffusion source approximation for supernova neutrino transport. Astrophys J 698:1174–1190. https://doi.org/10.1088/0004-637X/698/2/1174, 0711.2929 ADSCrossRefGoogle Scholar
  36. Limongi M, Straniero O, Chieffi A (2000) Massive stars in the range 13-25 M: evolution and nucleosynthesis. II. The solar metallicity models. Astrophys J Suppl 129:625–664. https://doi.org/10.1086/313424, arXiv:astro-ph/0003401 ADSCrossRefGoogle Scholar
  37. Lindquist RW (1966) Relativistic transport theory. Ann Phys 37:487–518. https://doi.org/10.1016/0003-4916(66)90207-7 ADSCrossRefGoogle Scholar
  38. Livne E, Burrows A, Walder R, Lichtenstadt I, Thompson TA (2004) Two-dimensional, time-dependent, multigroup, multiangle radiation hydrodynamics test simulation in the core-collapse supernova context. Astrophys J 609:277–287. https://doi.org/10.1086/421012, arXiv:astro-ph/0312633 ADSCrossRefGoogle Scholar
  39. Ludwig H, Freytag B, Steffen M (1999) A calibration of the mixing-length for solar-type stars based on hydrodynamical simulations. I. Methodical aspects and results for solar metallicity. Astron Astrophys 346:111–124. arXiv:astro-ph/9811179
  40. Maeder A, Meynet G (1989) Grids of evolutionary models from 0.85 to 120 solar masses - observational tests and the mass limits. Astron Astrophys 210:155–173ADSGoogle Scholar
  41. Marek A, Janka H (2009) Delayed neutrino-driven supernova explosions aided by the standing accretion-shock instability. Astrophys J 694:664–696. https://doi.org/10.1088/0004-637X/694/1/664, 0708.3372 ADSCrossRefGoogle Scholar
  42. Marek A, Dimmelmeier H, Janka H, Müller E, Buras R (2006) Exploring the relativistic regime with Newtonian hydrodynamics: an improved effective gravitational potential for supernova simulations. Astron Astrophys 445:273–289. https://doi.org/10.1051/0004-6361:20052840, arXiv:astro-ph/0502161 ADSCrossRefGoogle Scholar
  43. Meakin CA, Arnett D (2007) Turbulent convection in stellar interiors. I. Hydrodynamic simulation. Astrophys J 667:448–475. https://doi.org/10.1086/520318, arXiv:astro-ph/0611315 ADSCrossRefGoogle Scholar
  44. Messer OEB, Bruenn SW, Blondin JM, Hix WR, Mezzacappa A (2008) Multidimensional, multiphysics simulations of core-collapse supernovae. J Phys Conf Ser 125(1):012010. https://doi.org/10.1088/1742-6596/125/1/012010 CrossRefGoogle Scholar
  45. Meynet G, Maeder A (1997) Stellar evolution with rotation. I. The computational method and the inhibiting effect of the μ-gradient. Astron Astrophys 321:465–476ADSGoogle Scholar
  46. Mezzacappa A, Bruenn SW (1993) Stellar core collapse - a Boltzmann treatment of neutrino-electron scattering. Astrophys J 410:740–760. https://doi.org/10.1086/172791 ADSCrossRefGoogle Scholar
  47. Nomoto K, Hashimoto M (1988) Presupernova evolution of massive stars. Phys Rep 163:13–36ADSCrossRefGoogle Scholar
  48. Ott CD (2009) Topical review: the gravitational-wave signature of core-collapse supernovae. Class Quantum Gravity 26(6):063001. https://doi.org/10.1088/0264-9381/26/6/063001, 0809.0695 ADSCrossRefGoogle Scholar
  49. Ott CD, Burrows A, Dessart L, Livne E (2008) Two-dimensional multiangle, multigroup neutrino radiation-hydrodynamic simulations of postbounce supernova cores. Astrophys J 685:1069–1088. https://doi.org/10.1086/591440, 0804.0239 ADSCrossRefGoogle Scholar
  50. Pruet J, Hoffman RD, Woosley SE, Janka H, Buras R (2006) Nucleosynthesis in early supernova winds. II. The role of neutrinos. Astrophys J 644:1028–1039. https://doi.org/10.1086/503891, arXiv:astro-ph/0511194 ADSCrossRefGoogle Scholar
  51. Rampp M, Janka H (2002) Radiation hydrodynamics with neutrinos. Variable Eddington factor method for core-collapse supernova simulations. Astron Astrophys 396:361–392. https://doi.org/10.1051/0004-6361:20021398, arXiv:astro-ph/0203101 ADSCrossRefGoogle Scholar
  52. Rauscher T, Heger A, Hoffman RD, Woosley SE (2002) Nucleosynthesis in massive stars with improved nuclear and stellar physics. Astrophys J 576:323–348. https://doi.org/10.1086/341728, arXiv:astro-ph/0112478 ADSCrossRefGoogle Scholar
  53. Röpke FK, Hillebrandt W, Schmidt W, Niemeyer JC, Blinnikov SI, Mazzali PA (2007) A three-dimensional deflagration model for type Ia supernovae compared with observations. Astrophys J 668:1132–1139. https://doi.org/10.1086/521347, 0707.1024 ADSCrossRefGoogle Scholar
  54. Sagert I, Fischer T, Hempel M, Pagliara G, Schaffner-Bielich J, Mezzacappa A, Thielemann F, Liebendörfer M (2009) Signals of the QCD phase transition in core-collapse supernovae. Phys Rev Lett 102(8):081101.  https://doi.org/10.1103/PhysRevLett.102.081101, 0809.4225
  55. Springel V, Yoshida N, White SDM (2001) GADGET: a code for collisionless and gasdynamical cosmological simulations. New Astron 6:79–117. https://doi.org/10.1016/S1384-1076(01)00042-2, arXiv:astro-ph/0003162 ADSCrossRefGoogle Scholar
  56. Stone JM, Norman ML (1992a) ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I - The hydrodynamic algorithms and tests. Astrophys J Suppl 80:753–790, https://doi.org/10.1086/191680 ADSCrossRefGoogle Scholar
  57. Stone JM, Norman ML (1992b) ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II. The magnetohydrodynamic algorithms and tests. Astrophys J Suppl 80:791. https://doi.org/10.1086/191681 ADSCrossRefGoogle Scholar
  58. Stone JM, Mihalas D, Norman ML (1992) ZEUS-2D: a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. III - the radiation hydrodynamic algorithms and tests. Astrophys J Suppl 80:819–845. https://doi.org/10.1086/191682 ADSCrossRefGoogle Scholar
  59. Thielemann F, Nomoto K, Hashimoto M (1996) Core-collapse supernovae and their ejecta. Astrophys J 460:408. https://doi.org/10.1086/176980 ADSCrossRefGoogle Scholar
  60. Wanajo S, Nomoto K, Janka H, Kitaura FS, Müller B (2009) Nucleosynthesis in electron capture supernovae of asymptotic giant branch stars. Astrophys J 695:208–220. https://doi.org/10.1088/0004-637X/695/1/208, 0810.3999 ADSCrossRefGoogle Scholar
  61. Woosley SE, Weaver TA (1995) The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys J Suppl 101:181. https://doi.org/10.1086/192237 ADSCrossRefGoogle Scholar
  62. Woosley SE, Hartmann DH, Hoffman RD, Haxton WC (1990) The nu-process. Astrophys J 356:272–301. https://doi.org/10.1086/168839 ADSCrossRefGoogle Scholar
  63. Woosley SE, Heger A, Weaver TA (2002) The evolution and explosion of massive stars. Rev Mod Phys 74:1015–1071.  https://doi.org/10.1103/RevModPhys.74.1015 ADSCrossRefGoogle Scholar
  64. Young PA, Arnett D (2005) Observational tests and predictive stellar evolution. II. Nonstandard models. Astrophys J 618:908–918. https://doi.org/10.1086/426131, arXiv:astro-ph/0409658 ADSCrossRefGoogle Scholar
  65. Zingale M, Woosley SE, Rendleman CA, Day MS, Bell JB (2005) Three-dimensional numerical simulations of Rayleigh-Taylor unstable flames in type Ia supernovae. Astrophys J 632:1021–1034. https://doi.org/10.1086/433164, arXiv:astro-ph/0501655 ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Universität BaselBaselSwitzerland

Personalised recommendations