Advertisement

The Early Solar System

  • Maurizio Busso
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 453)

Abstract

This chapter reviews the early history of the solar system from radioactive nuclei of very different half-lives, which were recognized to have been present alive in pristine solids. Such radioactivities open a unique window on the evolution of the solar nebula and provide tools for understanding the crucial events that determined and accompanied the formation of the Sun. The understanding of the astrophysical origin of these unstable isotopes is still not complete and leaves puzzles and questions to our nucleosynthesis and stellar evolution models. We need to consider following aspects, among others: (1) The determination of an age for solar system bodies, as it emerged especially from the application of radioactive dating from long-lived isotopes. (2) A synthetic account of the measurements that proved the presence of shorter-lived radioactive nuclei (especially those of half-life lower than about 100 Myr) in the Early Solar System (hereafter ESS). (3) An explanation of their existence in terms of nuclear processes. We often only have incomplete and/or qualitative views of such complex processes. Additionally, these may have occurred at a galactic scale (providing a galactic inheritance), or at the level of the molecular cloud in which the Sun was formed, or also locally, either through a single, late stellar contamination affecting the pre-collapse solar nebula or through high-energy phenomena induced by the same early sun, in its flares or in the bombardment of pristine solids with the energetic particles of its intense winds.

References

  1. Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya VB et al (2017) GW170608: observation of a 19 solar-mass binary black hole coalescence. Astrophys J 851:L35. https://doi.org/10.3847/2041-8213/aa9f0c, arXiv:1711.05578ADSCrossRefGoogle Scholar
  2. Adams FC (2010) The birth environment of the solar system. Annu Rev Astron Astrophys 48:47–85.  https://doi.org/10.1146/annurev-astro-081309-130830 ADSCrossRefGoogle Scholar
  3. Adams FC, Laughlin G (2001) Constraints on the birth aggregate of the solar system. Icarus 150:151–162ADSCrossRefGoogle Scholar
  4. Adams FC, Fatuzzo M, Holden L (2014) Distributions of short-lived radioactive nuclei produced by young embedded star clusters. Astrophys J 789:86. https://doi.org/10.1088/0004-637X/789/1/86 ADSCrossRefGoogle Scholar
  5. Allègre CJ, Manhès G, Göpel C (1995) The age of the earth. Geochim Cosmochim Acta 59:2445–1456ADSCrossRefGoogle Scholar
  6. Amelin Y, Ghosh A, Rotenberg E (2005) Unraveling the evolution of chondrite parent asteroids by precise U-Pb dating and thermal modeling. Geochim Cosmochim Acta 69:505–518. https://doi.org/10.1016/j.gca.2004.05.047 ADSCrossRefGoogle Scholar
  7. Anderson FS, Whitaker TJ, Young D, Peterson B (2007) Rb-Sr dating using LDRIMS. In: Chronology of meteorites and the early solar system, pp 22–23Google Scholar
  8. Andrews AD, Rodono M, Linsky JL, Brown A, Butler CJ, Catalano S, Scaltriti F, Busso M, Nha I, Oh JY, Henry MCD, Hopkins JL, Landis HJ, Engelbrektson S (1988) Rotational modulation and flares on RS CVn and BY DRA stars. Astron Astrophys 204:177–192ADSGoogle Scholar
  9. Arnould M, Prantzos N (1999) Cosmic radioactivities. New Astron 4:283–301. https://doi.org/10.1016/S1384-1076(99)00016-0, arXiv:astro-ph/9907275ADSCrossRefGoogle Scholar
  10. Baiotti L, Rezzolla L (2017) Binary neutron star mergers: a review of Einstein’s richest laboratory. Rep Prog Phys 80(9):096, 901. https://doi.org/10.1088/1361-6633/aa67bb ADSMathSciNetCrossRefGoogle Scholar
  11. Baker RGA, Schönbächler M, Rehkämper M, Williams HM, Halliday AN (2010) The thallium isotope composition of carbonaceous chondrites. New evidence for live 205Pb in the early solar system. Earth Planet Sci Lett 291:39–47. https://doi.org/10.1016/j.epsl.2009.12.044 ADSCrossRefGoogle Scholar
  12. Banerjee P, Qian YZ, Heger A, Haxton WC (2016) Evidence from stable isotopes and 10Be for solar system formation triggered by a low-mass supernova. Nat Commun 7:13639.  https://doi.org/10.1038/ncomms13639, arXiv:1611.07162ADSCrossRefGoogle Scholar
  13. Birck J, Allègre CJ (1985) Evidence for the presence of Mn-53 in the early solar system. Geophys Res Lett 12:745–748. https://doi.org/10.1029/GL012i011p00745 ADSCrossRefGoogle Scholar
  14. Birck J, Allègre CJ (1988) Manganese-chromium isotope systematics and the development of the early solar system. Nature 331:579–584. https://doi.org/10.1038/331579a0 ADSCrossRefGoogle Scholar
  15. Bizzarro M, Ulfbeck D, Trinquier A, Thrane K, Connelly JN, Meyer BS (2007) Evidence for a Late Supernova Injection of 60Fe into the protoplanetary disk. Science 316:1178–.  https://doi.org/10.1126/science.1141040 ADSCrossRefGoogle Scholar
  16. Bondarenko V, Berzins J, Prokofjevs P, Simonova L, von Egidy T, Honzátko J, Tomandl I, Alexa P, Wirth HF, Köster U, Eisermann Y, Metz A, Graw G, Hertenberger R, Rubacek L (2002) Interplay of quasiparticle and phonon excitations in 181Hf observed through (n,γ) and (d−− > p) reactions. Nucl Phys A 709:3–59ADSCrossRefGoogle Scholar
  17. Boss AP (2005) The solar nebula. Elsevier, New York, p 63Google Scholar
  18. Boss AP, Keiser SA (2010) Who pulled the trigger: a supernova or an asymptotic giant branch star? Astrophys J 717:L1–L5. https://doi.org/10.1088/2041-8205/717/1/L1 ADSCrossRefGoogle Scholar
  19. Boss AP, Keiser SA, Ipatov SI, Myhill EA, Vanhala HAT (2010) Triggering collapse of the presolar dense cloud core and injecting short-lived radioisotopes with a shock wave. I. Varied shock speeds. Astrophys J 708:1268–1280. https://doi.org/10.1088/0004-637X/708/2/1268 ADSCrossRefGoogle Scholar
  20. Brennecka GA (2010) A complication in determining the precise age of the solar system. Tech rep, Arizona State UniversityGoogle Scholar
  21. Brennecka GA, Weyer S, Wadhwa M, Janney PE, Zipfel J, Anbar AD (2010) 238U/235U variations in meteorites: extant 247Cm and implications for Pb-Pb dating. Science 327:449–.  https://doi.org/10.1126/science.1180871 ADSCrossRefGoogle Scholar
  22. Brownlee D, Tsou P, Aléon J, Alexander CMO, Araki T et al (2006) Comet 81P/Wild 2 under a microscope. Science 314:1711.  https://doi.org/10.1126/science.1135840 ADSCrossRefGoogle Scholar
  23. Burkhardt C, Kleine T, Bourdon B, Palme H, Zipfel J, Friedrich JM, Ebel DS (2008) Hf W mineral isochron for Ca,Al-rich inclusions: age of the solar system and the timing of core formation in planetesimals. Geochim Cosmochim Acta 72:6177–6197. https://doi.org/10.1016/j.gca.2008.10.023 ADSCrossRefGoogle Scholar
  24. Busso M, Gallino R (1985) The production of neutron-rich isotopes during He burning in massive stars. Astron Astrophys 151:205–214ADSGoogle Scholar
  25. Busso M, Gallino R, Wasserburg GJ (1999) Nucleosynthesis in asymptotic giant branch stars: relevance for galactic enrichment and solar system formation. Annu Rev Astron Astrophys 37:239–309.  https://doi.org/10.1146/annurev.astro.37.1.239 ADSCrossRefGoogle Scholar
  26. Busso M, Gallino R, Wasserburg GJ (2003) Short-lived nuclei in the early solar system: a low mass stellar source? Publ Astron Soc Aust 20:356–370. https://doi.org/10.1071/AS03035 ADSCrossRefGoogle Scholar
  27. Busso M, Guandalini R, Persi P, Corcione L, Ferrari-Toniolo M (2007a) Mid-infrared photometry of mass-losing asymptotic giant branch stars. Astron J 133:2310–2319. https://doi.org/10.1086/512612, arXiv:astro-ph/0701501ADSCrossRefGoogle Scholar
  28. Busso M, Wasserburg GJ, Nollett KM, Calandra A (2007b) Can extra mixing in RGB and AGB stars be attributed to magnetic mechanisms? Astrophys J 671:802–810. https://doi.org/10.1086/522616, arXiv:0708.2949ADSCrossRefGoogle Scholar
  29. Cameron AGW (1960) New neutron sources of possible astrophysical importance. Astron J 65:485. https://doi.org/10.1086/108085 CrossRefGoogle Scholar
  30. Cameron AGW (1993) Nucleosynthesis and star formation. In: Levy EH, Lunine JI (eds) Protostars and planets III, pp 47–73Google Scholar
  31. Cameron AGW, Truran JW (1977) The supernova trigger for formation of the solar system. Icarus 30:447–461. https://doi.org/10.1016/0019-1035(77)90101-4 ADSCrossRefGoogle Scholar
  32. Cameron AGW, Hoeflich P, Myers PC, Clayton DD (1995) Massive supernovae, orion gamma rays, and the formation of the solar system. Astrophys J 447:L53. https://doi.org/10.1086/309554 ADSCrossRefGoogle Scholar
  33. Chaussidon M, Robert F, Russel SS, Gounelle M, Ash RD (2003) B and Mg isotopic variations in Leoville MRS-06 type B1 CAI:origin of 10Be and 26Al. In: EGS - AGU - EUG joint assembly, p 9292Google Scholar
  34. Chaussidon M, Robert F, McKeegan KD (2006) Reply to the comment by Desch and Ouellette on Li and B isotopic variations in an Allende CAI: evidence for the in situ decay of short-lived 10Be and for the possible presence of the short-lived nuclide 7Be in the early solar system. Geochim Cosmochim Acta 70:5433–5436. https://doi.org/10.1016/j.gca.2006.08.042 ADSCrossRefGoogle Scholar
  35. Chen JH, Wasserburg GJ (1987) A search for evidence of extinct lead 205 in iron meteorites. In: Lunar and planetary institute science conference abstracts, vol 18, p 165ADSGoogle Scholar
  36. Chieffi A, Limongi M (2004) Explosive yields of massive stars from Z = 0 to Z = Z solar. Astrophys J 608:405–410. https://doi.org/10.1086/392523, arXiv:astro-ph/0402625ADSCrossRefGoogle Scholar
  37. Chieffi A, Limongi M (2013) Pre-supernova evolution of rotating solar metallicity stars in the mass range 13-120 M and their explosive yields. Astrophys J 764:21. https://doi.org/10.1088/0004-637X/764/1/21 ADSCrossRefGoogle Scholar
  38. Chupp EL, Forrest DJ, Higbie PR, Suri AN, Tsai C, Dunphy PP (1973) Solar gamma ray lines observed during the solar activity of August 2 to August 11, 1972. Nature 241:333–335. https://doi.org/10.1038/241333a0 ADSCrossRefGoogle Scholar
  39. Clayton RN (1973) Oxygen isotopic composition of the Luna 20 soil. Geochim Cosmochim Acta 37:811–813. https://doi.org/10.1016/0016-7037(73)90177-4 ADSCrossRefGoogle Scholar
  40. Clayton DD (1988) Nuclear cosmochronology within analytic models of the chemical evolution of the solar neighbourhood. Mon Not R Astron Soc 234:1–36ADSCrossRefGoogle Scholar
  41. Clayton DD, Nittler LR (2004) Astrophysics with presolar stardust. Annu Rev Astron Astrophys 42:39–78.  https://doi.org/10.1146/annurev.astro.42.053102.134022 ADSCrossRefGoogle Scholar
  42. Cowley CR (1995) An introduction to cosmochemistry. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  43. Cristallo S, Piersanti L, Straniero O, Gallino R, Domínguez I, Abia C, Di Rico G, Quintini M, Bisterzo S (2011) Evolution, nucleosynthesis, and yields of low-mass asymptotic giant branch stars at different metallicities. II. The FRUITY database. Astrophys J Suppl 197:17. https://doi.org/10.1088/0067-0049/197/2/17, arXiv:1109.1176ADSCrossRefGoogle Scholar
  44. Cristallo S, Straniero O, Piersanti L, Gobrecht D (2015) Evolution, nucleosynthesis, and yields of AGB stars at different metallicities. III. Intermediate-mass models, revised low-mass models, and the ph-FRUITY interface. Astrophys J Suppl 219:40. https://doi.org/10.1088/0067-0049/219/2/40, arXiv:1507.07338ADSCrossRefGoogle Scholar
  45. Dalrymple GB (1991) The age of the earth. Stanford University Press, Palo AltoGoogle Scholar
  46. Dauphas N, Cook DL, Sacarabany A, Fröhlich C, Davis AM, Wadhwa M, Pourmand A, Rauscher T, Gallino R (2008a) 60Fe in the cosmic blender. Geochim Cosmochim Acta 72:200Google Scholar
  47. Dauphas N, Cook DL, Sacarabany A, Fröhlich C, Davis AM, Wadhwa M, Pourmand A, Rauscher T, Gallino R (2008b) Iron 60 evidence for early injection and efficient mixing of stellar debris in the protosolar nebula. Astrophys J 686:560–569. https://doi.org/10.1086/589959, 0805.2607 ADSCrossRefGoogle Scholar
  48. Davies MB, Adams FC, Armitage P, Chambers J, Ford E, Morbidelli A, Raymond SN, Veras D (2014) The long-term dynamical evolution of planetary systems. In: Protostars and planets VI, pp 787–808Google Scholar
  49. Davis AM, McKeegan KD (2014) Short-lived radionuclides and early solar system chronology, pp 361–395CrossRefGoogle Scholar
  50. Denissenkov PA, Pinsonneault M, MacGregor KB (2009) Magneto-thermohaline mixing in red giants. Astrophys J 696:1823–1833. https://doi.org/10.1088/0004-637X/696/2/1823, arXiv:0806.4346ADSCrossRefGoogle Scholar
  51. Donohue PH, Huss GR, Nagashima K, Telus M (2017) Live(?) 60Fe during aqueous alteration of chondrite parent bodies: evidence from UOCs and CV chondrites. In: Lunar and planetary science conference, vol 48, pp 2307ADSGoogle Scholar
  52. D’Orazi V, Magrini L, Randich S, Galli D, Busso M, Sestito P (2009) Enhanced production of barium in low-mass stars: evidence from open clusters. Astrophys J 693:L31–L34. https://doi.org/10.1088/0004-637X/693/1/L31 ADSCrossRefGoogle Scholar
  53. Dukes D, Krumholz MR (2012) Was the sun born in a massive cluster? Astrophys J 754:56. https://doi.org/10.1088/0004-637X/754/1/56 ADSCrossRefGoogle Scholar
  54. Duprat J, Tatischeff V (2008) On non-thermal nucleosynthesis of short-lived radionuclei in the early solar system. New Astron Rev 52:463–466. https://doi.org/10.1016/j.newar.2008.06.016 ADSCrossRefGoogle Scholar
  55. Dwarkadas VV, Dauphas N, Meyer B, Boyajian P, Bojazi M (2017) Triggered star formation inside the shell of a Wolf-Rayet bubble as the origin of the solar system. Astrophys J 851:147. https://doi.org/10.3847/1538-4357/aa992e, 1712.10053 ADSCrossRefGoogle Scholar
  56. Eggleton PP, Dearborn DSP, Lattanzio JC (2006) Deep mixing of 3He: reconciling big bang and stellar nucleosynthesis. Science 314:1580–.  https://doi.org/10.1126/science.1133065, arXiv:astro-ph/0611039ADSCrossRefGoogle Scholar
  57. Eggleton PP, Dearborn DSP, Lattanzio JC (2008) Compulsory deep mixing of 3He and CNO isotopes in the envelopes of low-mass red giants. Astrophys J 677:581–592. https://doi.org/10.1086/529024 ADSCrossRefGoogle Scholar
  58. Evans NJ II (1999) Physical conditions in regions of star formation. Annu Rev Astron Astrophys 37:311–362.  https://doi.org/10.1146/annurev.astro.37.1.311, arXiv:astro-ph/9905050ADSCrossRefGoogle Scholar
  59. Fitoussi C, Duprat J, Tatischeff V, Kiener J, Naulin F, Raisbeck G, Assunção M, Bourgeois C, Chabot M, Coc A, Engrand C, Gounelle M, Hammache F, Lefebvre A, Porquet M, Scarpaci J, de Séréville N, Thibaud J, Yiou F (2008) Measurement of the 24Mg(3He,p)26Al cross section: implication for Al26 production in the early solar system. Phys Rev C 78(4):044613.  https://doi.org/10.1103/PhysRevC.78.044613 ADSCrossRefGoogle Scholar
  60. Frisch PC, Redfield S, Slavin JD (2011) The Interstellar Medium Surrounding the Sun. Annu Rev Astron Astrophys 49:237–279.  https://doi.org/10.1146/annurev-astro-081710-102613 ADSCrossRefGoogle Scholar
  61. Gaidos E, Krot AN, Huss GR (2009a) On the oxygen isotopic composition of the solar system. Astrophys J 705:L163–L167. https://doi.org/10.1088/0004-637X/705/2/L163, arXiv:0909.3589ADSCrossRefGoogle Scholar
  62. Gaidos E, Krot AN, Williams JP, Raymond SN (2009b) 26Al and the formation of the solar system from a molecular cloud contaminated by Wolf-Rayet winds. Astrophys J 696:1854–1863. https://doi.org/10.1088/0004-637X/696/2/1854, arXiv:0901.3364ADSCrossRefGoogle Scholar
  63. Gallino R, Arlandini C, Busso M, Lugaro M, Travaglio C, Straniero O, Chieffi A, Limongi M (1998) Evolution and nucleosynthesis in low-mass asymptotic giant branch stars. II. Neutron capture and the s-process. Astrophys J 497:388. https://doi.org/10.1086/305437 ADSCrossRefGoogle Scholar
  64. Goebel R, Begemann F, Ott U (1982) On neutron-induced and other noble gases in Allende inclusions. Geochim Cosmochim Acta 46:1777–1792. https://doi.org/10.1016/0016-7037(82)90117-X ADSCrossRefGoogle Scholar
  65. Goswami JN, Marhas KK, Chaussidon M, Gounelle M, Meyer BS (2005) Origin of short-lived radionuclides in the early solar system. In: Krot AN, Scott ERD, Reipurth B (eds) Chondrites and the protoplanetary disk. Astronomical Society of the Pacific conference series, vol 341, p 485Google Scholar
  66. Gounelle M (2015) The abundance of 26Al-rich planetary systems in the galaxy. Astron Astrophys 582:A26. https://doi.org/10.1051/0004-6361/201526174 ADSCrossRefGoogle Scholar
  67. Gounelle M, Meibom A (2010) The origin of 60Fe and other short-lived radionuclides in the early solar system. In: Montmerle T, Ehrenreich D, Lagrange A-M (eds) EAS publications series, vol 41, pp 301–311.  https://doi.org/10.1051/eas/1041021 CrossRefGoogle Scholar
  68. Gounelle M, Meynet G (2012a) Solar system genealogy revealed by extinct short-lived radionuclides in meteorites. Astron Astrophys 545:A4. https://doi.org/10.1051/0004-6361/201219031 ADSCrossRefGoogle Scholar
  69. Gounelle M, Meynet G (2012b) Solar system genealogy revealed by extinct short-lived radionuclides in meteorites. Astron Astrophys 545:A4ADSCrossRefGoogle Scholar
  70. Gounelle M, Shu FH, Shang H, Glassgold AE, Rehm KE, Lee T (2001) Extinct radioactivities and protosolar cosmic rays: self-shielding and light elements. Astrophys J 548:1051–1070. https://doi.org/10.1086/319019 ADSCrossRefGoogle Scholar
  71. Gounelle M, Shang S, Glassgold AE, Shu FH, Rehm EK, Lee T (2003) Early solar system irradiation and beryllium-7 synthesis. In: Mackwell S, Stansbery E (eds) Lunar and planetary institute science conference abstracts, vol 34, p 1833Google Scholar
  72. Gounelle M, Shu FH, Shang H, Glassgold AE, Rehm KE, Lee T (2006) The irradiation origin of beryllium radioisotopes and other short-lived radionuclides. Astrophys J 640:1163–1170. https://doi.org/10.1086/500309, arXiv:astro-ph/0512517ADSCrossRefGoogle Scholar
  73. Gounelle M, Meibom A, Hennebelle P, Inutsuka Si (2009) Supernova propagation and cloud enrichment: a new model for the origin of 60Fe in the early solar system. Astrophys J 694:L1–L5. https://doi.org/10.1088/0004-637X/694/1/L1 ADSCrossRefGoogle Scholar
  74. Guandalini R, Busso M (2008) Infrared photometry and evolution of mass-losing AGB stars. II. Luminosity and colors of MS and S stars. Astron Astrophys 488:675–684. https://doi.org/10.1051/0004-6361:200809932, arXiv:0806.4591ADSCrossRefGoogle Scholar
  75. Guandalini R, Cristallo S (2013) Luminosities of carbon-rich asymptotic giant branch stars in the Milky Way. Astron Astrophys 555:A120. https://doi.org/10.1051/0004-6361/201321225 ADSCrossRefGoogle Scholar
  76. Guandalini R, Busso M, Ciprini S, Silvestro G, Persi P (2006) Infrared photometry and evolution of mass-losing AGB stars. I. Carbon stars revisited. Astron Astrophys 445:1069–1080. https://doi.org/10.1051/0004-6361:20053208, arXiv:astro-ph/0509739ADSCrossRefGoogle Scholar
  77. Guandalini R, Palmerini S, Busso M, Uttenthaler S (2009) Extra-mixing in luminous cool red giants: hints from evolved stars with and without Li. Publ Astron Soc Aust 26:168–175. https://doi.org/10.1071/AS08063, arXiv:0905.4458ADSCrossRefGoogle Scholar
  78. Harper CL, Jacobsen SB (1996) Evidence for 182Hf in the early solar system and constraints on the timescale of terrestrial accretion and core formation. Geochim Cosmochim Acta 60:1131–1153. https://doi.org/10.1016/0016-7037(96)00027-0 ADSCrossRefGoogle Scholar
  79. Hartmann L, Kenyon SJ (1996) The FU orionis phenomenon. Annu Rev Astron Astrophys 34:207–240.  https://doi.org/10.1146/annurev.astro.34.1.207 ADSCrossRefGoogle Scholar
  80. Hennebelle P, Mac Low MM, Vazquez-Semadeni E (2009) Diffuse interstellar medium and the formation of molecular clouds. Cambridge University Press, Cambridge, p 205Google Scholar
  81. Hester JJ, Desch SJ (2005) Understanding our origins: star formation in HII region environments. In: Krot AN, Scott ERD, Reipurth B (eds) Chondrites and the protoplanetary disk. Astronomical Society of the Pacific conference series, vol 341, p 107Google Scholar
  82. Hidaka H, Yoneda S (2013) Radioactive Cs capture in the early solar system. Sci Rep 3:1330.  https://doi.org/10.1038/srep01330 ADSCrossRefGoogle Scholar
  83. Honda S, Aoki W, Ishimaru Y, Wanajo S, Ryan SG (2006) Neutron-capture elements in the very metal poor star HD 122563. Astrophys J 643:1180–1189. https://doi.org/10.1086/503195, arXiv:astro-ph/0602107ADSCrossRefGoogle Scholar
  84. Hsu W, Guan Y, Leshin LA, Ushikubo T, Wasserburg GJ (2006) A late episode of irradiation in the early solar system: evidence from extinct 36Cl and 26Al in meteorites. Astrophys J 640:525–529. https://doi.org/10.1086/500043 ADSCrossRefGoogle Scholar
  85. Huss GR, Goswami JN, Meyer BS, Sahijpal S, Wasserburg GJ (2007) Stellar sources of short-lived radionuclides. In: Chronology of meteorites and the early solar system, pp 71–72Google Scholar
  86. Huss GR, Meyer BS, Srinivasan G, Goswami JN, Sahijpal S (2009) Stellar sources of the short-lived radionuclides in the early solar system. Geochim Cosmochim Acta 73:4922–4945ADSCrossRefGoogle Scholar
  87. Hutcheon ID, Krot AN, Keil K, Phinney DL, Scott ERD (1998) 53Mn-53Cr dating of Fayalite formation in the CV3 chondrite Mokoia: evidence for asteroidal alteration. Science 282:1865.  https://doi.org/10.1126/science.282.5395.1865 ADSCrossRefGoogle Scholar
  88. Jacobsen B, Yin Qz, Moynier F, Amelin Y, Krot AN, Nagashima K, Hutcheon ID, Palme H (2008) 26Al- 26Mg and 207Pb- 206Pb systematics of Allende CAIs: canonical solar initial 26Al/ 27Al ratio reinstated. Earth Planet Sci Lett 272:353–364ADSCrossRefGoogle Scholar
  89. Jacobsen B, Matzel JEP, Hutcheon ID, Ramon E, Krot AN, Ishii HA, Nagashima K, Yin Q (2009) The 36Cl-36S systematics of Wadalite from the Allende meteorite. In: Lunar and Planetary Institute Science conference abstracts, vol 40, p 2553ADSGoogle Scholar
  90. Jacobsen B, Wasserburg GJ, McKeegan KD, Hutcheon ID, Krot AN, Yin QZ, Matzel JE (2013) Resetting and disturbance to the Al-Mg system in Allende type B CAIs. In: Lunar and planetary science conference. Lunar and Planetary Institute Technical Report, vol 44, p 2941Google Scholar
  91. Jeffery PM, Reynolds JH (1961) Origin of excess Xe129 in stone meteorites. J Geophys Res 66:3582–3583. https://doi.org/10.1029/JZ066i010p03582 ADSCrossRefGoogle Scholar
  92. Joggerst CC, Woosley SE, Heger A (2009) Mixing in zero- and solar-metallicity supernovae. Astrophys J 693:1780–1802. https://doi.org/10.1088/0004-637X/693/2/1780, arXiv:0810.5142ADSCrossRefGoogle Scholar
  93. Jura M, Xu S, Young ED (2013) 26Al in the early solar system: not so unusual after all. Astrophys J 775:L41. https://doi.org/10.1088/2041-8205/775/2/L41, 1308.6325 ADSCrossRefGoogle Scholar
  94. Kastner JH, Myers PC (1994) An observational estimate of the probability of encounters between mass-losing evolved stars and molecular clouds. Astrophys J 421:605–615. https://doi.org/10.1086/173676 ADSCrossRefGoogle Scholar
  95. Kelley WR, Wasserburg GJ (1978) Evidence for the existence of Pd-107 in the early solar system. Geophys Res Lett 5:1079–1082. https://doi.org/10.1029/GL005i012p01079 ADSCrossRefGoogle Scholar
  96. Kerekgyarto AG, Jeffcoat CR, Lapen TJ, Andreasen R, Righter M, Ross DK, Simon JI (2015) Supra-canonical initial 26Al/27Al from a reprocessed Allende CAI. In: Lunar and planetary science conference, vol 46, pp 2918ADSGoogle Scholar
  97. Kothes R, Uyaniker B, Pineault S (2001) The supernova remnant G106.3+2.7 and its pulsar-wind nebula: relics of triggered star formation in a complex environment. Astrophys J 560:236–243. https://doi.org/10.1086/322511, arXiv:astro-ph/0106270ADSCrossRefGoogle Scholar
  98. Kozlovsky B, Murphy RJ, Ramaty R (2002) Nuclear deexcitation gamma-ray lines from accelerated particle interactions. Astrophys J Suppl 141:523–541. https://doi.org/10.1086/340545 ADSCrossRefGoogle Scholar
  99. Kratz K, Pfeiffer B, Cowan JJ, Sneden C (2004) r-process chronometers. New Astron Rev 48:105–108. https://doi.org/10.1016/j.newar.2003.11.014 ADSCrossRefGoogle Scholar
  100. Krot AN, Makide K, Nagashima K, Huss GR, Ogliore RC, Ciesla FJ, Yang L, Hellebrand E, Gaidos E (2012) Heterogeneous distribution of 26Al at the birth of the solar system: evidence from refractory grains and inclusions. Meteorit Planet Sci 47:1948–1979.  https://doi.org/10.1111/maps.12008 ADSCrossRefGoogle Scholar
  101. Kuffmeier M, Frostholm Mogensen T, Haugbølle T, Bizzarro M, Nordlund Å (2016) Tracking the distribution of 26Al and 60Fe during the early phases of star and disk evolution. Astrophys J 826:22. https://doi.org/10.3847/0004-637X/826/1/22, arXiv:1605.05008ADSCrossRefGoogle Scholar
  102. Kuroda T, Wanajo S, Nomoto K (2008) The r-process in supersonic neutrino-driven winds: the role of the wind termination shock. Astrophys J 672:1068–1078. https://doi.org/10.1086/523795 ADSCrossRefGoogle Scholar
  103. Lada CJ, Lada EA (2003) Embedded clusters in molecular clouds. Annu Rev Astron Astrophys 41:57–115.  https://doi.org/10.1146/annurev.astro.41.011802.094844, arXiv:astro-ph/0301540ADSCrossRefGoogle Scholar
  104. Langer N, El Eid MF, Baraffe I (1989) Blue supergiant supernova progenitors. Astron Astrophys 224:L17–L20ADSGoogle Scholar
  105. Lee D, Halliday AN (1995) Hafnium-tungsten chronometry and the timing of terrestrial core formation. Nature 378:771–774. https://doi.org/10.1038/378771a0 ADSCrossRefGoogle Scholar
  106. Lee D, Halliday AN (1996) Hf-W isotopic evidence for rapid accretion and differentiation in the early solar system. Science 274:1876–1879.  https://doi.org/10.1126/science.274.5294.1876 ADSCrossRefGoogle Scholar
  107. Lee T, Papanastassiou DA, Wasserburg GJ (1976) Demonstration of 26Mg excess in Allende and evidence for 26Al. Geophys Res Lett 3:109–109. https://doi.org/10.1029/GL003i002p00109 ADSCrossRefGoogle Scholar
  108. Lee T, Papanastassiou DA, Wasserburg GJ (1977) Aluminum-26 in the early solar system - fossil or fuel. Astrophys J 211:L107–L110. https://doi.org/10.1086/182351 ADSCrossRefGoogle Scholar
  109. Lee T, Shu FH, Shang H, Glassgold AE, Rehm KE (1998a) Protostellar cosmic rays and extinct radioactivities in meteorites. Astrophys J 506:898–912. https://doi.org/10.1086/306284 ADSCrossRefGoogle Scholar
  110. Lee T, Shu FH, Shang H, Glassgold AE, Rehm KE (1998b) Protostellar cosmic rays and extinct radioactivities in meteorites. Astrophys J 506:898–912. https://doi.org/10.1086/306284 ADSCrossRefGoogle Scholar
  111. Leshin LA, Guan Y, Lin Y (2004) Implications of meteoritic 36Cl abundance for the origin of short-lived radionuclides in the early solar system. In: Krot A, Scott E, Keil K, Reipurth B (eds) Workshop on chondrites and the protoplanetary disk, p 9084Google Scholar
  112. Limongi M, Chieffi A (2003) Evolution, explosion, and nucleosynthesis of core-collapse supernovae. Astrophys J 592:404–433. https://doi.org/10.1086/375703, arXiv:astro-ph/0304185ADSCrossRefGoogle Scholar
  113. Limongi M, Chieffi A (2006) The nucleosynthesis of 26Al and 60Fe in solar metallicity stars extending in mass from 11 to 120 M solar: the hydrostatic and explosive contributions. Astrophys J 647:483–500. https://doi.org/10.1086/505164, arXiv:astro-ph/0604297ADSCrossRefGoogle Scholar
  114. Lin RP, Krucker S, Hurford GJ, Smith DM, Hudson HS, Holman GD, Schwartz RA, Dennis BR, Share GH, Murphy RJ, Emslie AG, Johns-Krull C, Vilmer N (2003) RHESSI observations of particle acceleration and energy release in an intense solar gamma-ray line flare. Astrophys J 595:L69–L76. https://doi.org/10.1086/378932 ADSCrossRefGoogle Scholar
  115. Lin Y, Guan Y, Leshin LA, Ouyang Z, Wang D (2004) Evidence for live 36Cl in Ca-Al-rich inclusions from the Ningqiang carbonaceous chondrite. In: Mackwell S, Stansbery E (eds) Lunar and Planetary Institute science conference abstracts, vol 35, p 2084Google Scholar
  116. Liu M, Iizuka Y, McKeegan KD, Tonui EK, Young ED (2005) Supra-canonical 26Al/27Al ratios in an unaltered Allende CAI. In: Mackwell S, Stansbery E (eds) 36th annual lunar and planetary science conference. Lunar and Planetary Institute science conference abstracts, vol 36, p 2079Google Scholar
  117. Lugaro M, Heger A, Osrin D, Goriely S, Zuber K, Karakas AI, Gibson BK, Doherty CL, Lattanzio JC, Ott U (2014) Stellar origin of the 182Hf cosmochronometer and the presolar history of solar system matter. Science 345:650–653.  https://doi.org/10.1126/science.1253338 ADSCrossRefGoogle Scholar
  118. Lugmair GW, Marti K (1977) Sm-Nd-Pu timepieces in the Angra DOS Reis meteorite. Earth Planet Sci Lett 35:273–284. https://doi.org/10.1016/0012-821X(77)90131-5 ADSCrossRefGoogle Scholar
  119. Lugmair GW, Shukolyukov A (1998) Early solar system timescales according to 53Mn-53Cr systematics. Geochim Cosmochim Acta 62:2863–2886. https://doi.org/10.1016/S0016-7037(98)00189-6 ADSCrossRefGoogle Scholar
  120. Lugmair GW, MacIsaac C, Shukolyukov A (1992) The 53Mn-53Cr isotope system and early planetary evolution. In: Lunar and planetary institute science conference abstracts, vol 23, p 823ADSGoogle Scholar
  121. MacPherson GJ, Huss GR, Davis AM (2003) Extinct 10Be in type A calcium-aluminum-rich inclusions from CV chondrites. Geochim Cosmochim Acta 67:3165–3179. https://doi.org/10.1016/S0016-7037(02)01298-X ADSCrossRefGoogle Scholar
  122. Maiorca E, Randich S, Busso M, Magrini L, Palmerini S (2011) s-processing in the galactic disk. I. Super-solar abundances of Y, Zr, La, and Ce in young open clusters. Astrophys J 736:120. https://doi.org/10.1088/0004-637X/736/2/120 ADSCrossRefGoogle Scholar
  123. Maiorca E, Magrini L, Busso M, Randich S, Palmerini S, Trippella O (2012) News on the s process from young open clusters. Astrophys J 747:53. https://doi.org/10.1088/0004-637X/747/1/53 ADSCrossRefGoogle Scholar
  124. Makide K, Nagashima K, Krot AN, Huss GR, Hutcheon ID, Hellebrand E, Petaev MI (2013) Heterogeneous distribution of 26Al at the birth of the solar system: evidence from corundum-bearing refractory inclusions in carbonaceous chondrites. Geochim Cosmochim Acta 110:190–215. https://doi.org/10.1016/j.gca.2013.01.028 ADSCrossRefGoogle Scholar
  125. Matzel JEP, Jacobsen B, Hutcheon ID, Krot AN, Nagashima K, Yin Q, Ramon E, Weber PK, Wasserburg GJ (2010) Distribution and origin of 36Cl in Allende CAIs. In: Lunar and Planetary Institute science conference abstracts, vol 41, p 2631ADSGoogle Scholar
  126. Mauersberger K, Erbacher B, Krankowsky D, Gunther J, Nickel R (1999) Ozone isotope enrichment: isotopomer-specific rate coefficients. Science 283:370.  https://doi.org/10.1126/science.283.5400.370 ADSCrossRefGoogle Scholar
  127. McComas DJ, Bzowski M, Fuselier SA, Frisch PC, Galli A, Izmodenov VV, Katushkina OA, Kubiak MA, Lee MA, Leonard TW, Möbius E, Park J, Schwadron NA, Sokół JM, Swaczyna P, Wood BE, Wurz P (2015) Local interstellar medium: six years of direct sampling by IBEX. Astrophys J Suppl 220:22. https://doi.org/10.1088/0067-0049/220/2/22 ADSCrossRefGoogle Scholar
  128. McKeegan KD, Davis AM (2005) Early solar system chronology. Elsevier, New York, p 431Google Scholar
  129. McKeegan KD, Chaussidon M, Robert F (2000) Incorporation of short-lived 10Be in a calcium-aluminum-rich inclusion from the Allende meteorite. Science 289:1334–1337.  https://doi.org/10.1126/science.289.5483.1334 ADSCrossRefGoogle Scholar
  130. Meyer BS (2005) Synthesis of short-lived radioactivities in a massive star. In: Krot AN, Scott ERD, Reipurth B (eds) Chondrites and the protoplanetary disk. Astronomical Society of the Pacific conference series, vol 341, p 515Google Scholar
  131. Meyer BS, Clayton DD (2000) Short-lived radioactivities and the birth of the sun. Space Sci Rev 92:133–152. https://doi.org/10.1023/A:1005282825778 ADSCrossRefGoogle Scholar
  132. Meynet G, Ekström S, Maeder A, Hirschi R, Georgy C, Beffa C (2008) Developments in physics of massive stars. In: Bresolin F, Crowther PA, Puls J (eds) Massive stars as cosmic engines. IAU symposium, vol 250, pp 147–160Google Scholar
  133. Mostefaoui S, Lugmair GW, Hoppe P, El Goresy A (2003) Evidence for live iron-60 in Semarkona and Chervony Kut: a NanoSIMS study. In: Mackwell S, Stansbery E (eds) Lunar and Planetary Institute science conference abstracts, vol 34, p 1585Google Scholar
  134. Mostefaoui S, Lugmair GW, Hoppe P, El Goresy A (2004) Evidence for live 60Fe in meteorites. New Astron Rev 48:155–159. https://doi.org/10.1016/j.newar.2003.11.022 ADSCrossRefGoogle Scholar
  135. Moynier F, Blichert-Toft J, Wang K, Herzog GF, Albarede F (2011) The elusive 60Fe in the solar nebula. Astrophys J 741:71. https://doi.org/10.1088/0004-637X/741/2/71 ADSCrossRefGoogle Scholar
  136. Murray N (2011) Star formation efficiencies and lifetimes of giant molecular clouds in the milky way. Astrophys J 729:133. 1007.3270 ADSCrossRefGoogle Scholar
  137. Murty SVS, Goswami JN, Shukolyukov YA (1997) Excess 36Ar in the Efremovka meteorite: a strong hint for the presence of 36Cl in the early solar system. Astrophys J 475:L65+. https://doi.org/10.1086/310449
  138. Nielsen SG, Rehkämper M, Halliday AN (2006) Large thallium isotopic variations in iron meteorites and evidence for lead-205 in the early solar system. Geochim Cosmochim Acta 70:2643–2657. https://doi.org/10.1016/j.gca.2006.02.012 ADSCrossRefGoogle Scholar
  139. Nollett KM, Busso M, Wasserburg GJ (2003) Cool bottom processes on the thermally pulsing asymptotic giant branch and the isotopic composition of circumstellar dust grains. Astrophys J 582:1036–1058. https://doi.org/10.1086/344817, arXiv:astro-ph/0211271ADSCrossRefGoogle Scholar
  140. Nomoto K, Tominaga N, Umeda H, Kobayashi C, Maeda K (2006) Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution. Nucl Phys A 777:424–458. https://doi.org/10.1016/j.nuclphysa.2006.05.008, arXiv:astro-ph/0605725ADSCrossRefGoogle Scholar
  141. Nordhaus J, Busso M, Wasserburg GJ, Blackman EG, Palmerini S (2008) Magnetic mixing in red giant and asymptotic giant branch stars. Astrophys J 684:L29–L32. https://doi.org/10.1086/591963, arXiv:0806.3933ADSCrossRefGoogle Scholar
  142. Nucci MC, Busso M (2014) Magnetohydrodynamics and deep mixing in evolved stars. I. Two- and three-dimensional analytical models for the asymptotic giant branch. Astrophys J 787:141. https://doi.org/10.1088/0004-637X/787/2/141 ADSCrossRefGoogle Scholar
  143. Nugis T, Lamers HJGLM (2000) Mass-loss rates of Wolf-Rayet stars as a function of stellar parameters. Astron Astrophys 360:227–244ADSGoogle Scholar
  144. Ouellette N, Desch SJ, Hester JJ, Leshin LA (2005) A nearby supernova injected short-lived radionuclides into our protoplanetary disk. In: Krot AN, Scott ERD, Reipurth B (eds) Chondrites and the protoplanetary disk. Astronomical Society of the Pacific conference series, vol 341, p 527Google Scholar
  145. Ouellette N, Desch SJ, Hester JJ (2007a) Interaction of supernova ejecta with nearby protoplanetary disks. Astrophys J 662:1268–1281. https://doi.org/10.1086/518102 ADSCrossRefGoogle Scholar
  146. Ouellette N, Desch SJ, Hester JJ (2007b) Interaction of supernova ejecta with nearby protoplanetary disks. Astrophys J 662:1268–1281. https://doi.org/10.1086/518102, arXiv:0704.1652ADSCrossRefGoogle Scholar
  147. Pagel BEJ (1997) Nucleosynthesis and chemical evolution of galaxies. Cambridge University Press, CambridgeGoogle Scholar
  148. Palla F, Stahler SW (2000) Accelerating star formation in clusters and associations. Astrophys J 540:255–270. https://doi.org/10.1086/309312 ADSCrossRefGoogle Scholar
  149. Palmerini S, Busso M (2008) 26Al production from magnetically induced extramixing in AGB stars. New Astron Rev 52:412–415. https://doi.org/10.1016/j.newar.2008.05.003, arXiv:0806.2733ADSCrossRefGoogle Scholar
  150. Palmerini S, Busso M, Maiorca E, Guandalini R (2009) Nucleosynthesis of light-element isotopes in evolved stars experiencing extended mixing. Publ Astron Soc Aust 26:161–167. https://doi.org/10.1071/AS08040, arXiv:0905.4365ADSCrossRefGoogle Scholar
  151. Palmerini S, La Cognata M, Cristallo S, Busso M (2011a) Deep mixing in evolved stars. I. The effect of reaction rate revisions from C to Al. Astrophys J 729:3. https://doi.org/10.1088/0004-637X/729/1/3 ADSCrossRefGoogle Scholar
  152. Palmerini S, Cristallo S, Busso M, Abia C, Uttenthaler S, Gialanella L, Maiorca E (2011b) Deep mixing in evolved stars. II. Interpreting Li abundances in red giant branch and asymptotic giant branch stars. Astrophys J 741:26. https://doi.org/10.1088/0004-637X/741/1/26 ADSCrossRefGoogle Scholar
  153. Palmerini S, Trippella O, Busso M (2017) A deep mixing solution to the aluminum and oxygen isotope puzzles in pre-solar grains. Mon Not R Astron Soc 467:1193–1201.  https://doi.org/10.1093/mnras/stx137 ADSGoogle Scholar
  154. Palmerini S, Trippella O, Busso M, Vescovi D, Petrelli M, Zucchini A, Frondini F (2018) s-processing from MHD-induced mixing and isotopic abundances in presolar SiC grains. Geochim Cosmochim Acta 221:21–36. https://doi.org/10.1016/j.gca.2017.05.030, arXiv:1711.03039ADSCrossRefGoogle Scholar
  155. Pfalzner S (2013) Early evolution of the birth cluster of the solar system. Astron Astrophys 549:A82. https://doi.org/10.1051/0004-6361/201218792 ADSCrossRefGoogle Scholar
  156. Pfalzner S, Davies MB, Gounelle M, Johansen A, Münker C, Lacerda P, Portegies Zwart S, Testi L, Trieloff M, Veras D (2015) The formation of the solar system. Phys Scr 90(6):068001ADSCrossRefGoogle Scholar
  157. Podosek FA, Lewis RS (1972) 129I and 244Pu abundances in white inclusions of the Allende meteorite. Earth Planet Sci Lett 15:101. https://doi.org/10.1016/0012-821X(72)90048-9 ADSCrossRefGoogle Scholar
  158. Podosek FA, Nichols RH (1997) Short-lived radionuclides in the solar nebula. In: Bernatowicz TJ, Zinner E (eds) American Institute of Physics conference series, vol 402, pp 617–647. https://doi.org/10.1063/1.53321
  159. Preibisch T, Zinnecker H (1999) The history of low-mass star formation in the upper Scorpius OB association. Astron J 117:2381–2397. https://doi.org/10.1086/300842 ADSCrossRefGoogle Scholar
  160. Ramaty R, Mandzhavidze N (2000) Gamma-rays from solar flares. In: Martens PCH, Tsuruta S, Weber MA (eds) Highly energetic physical processes and mechanisms for emission from astrophysical plasmas. IAU Symposium, vol 195, p 123ADSCrossRefGoogle Scholar
  161. Rauscher T, Heger A, Hoffman RD, Woosley SE (2002) Nucleosynthesis in massive stars with improved nuclear and stellar physics. Astrophys J 576:323–348. https://doi.org/10.1086/341728, arXiv:astro-ph/0112478ADSCrossRefGoogle Scholar
  162. Reynolds JH (1960) Isotopic composition of primordial xenon. Phys Rev Lett 4:351–354.  https://doi.org/10.1103/PhysRevLett.4.351 ADSCrossRefGoogle Scholar
  163. Rowe MW, Kuroda PK (1965) Fissiogenic xenon from the Pasamonte meteorite. J Geophys Res 70:709–714. https://doi.org/10.1029/JZ070i003p00709 ADSCrossRefGoogle Scholar
  164. Rutherford E (1929) Origin of actinium and age of the earth. Nature 123:313–314ADSCrossRefzbMATHGoogle Scholar
  165. Sahijpal S, Goswami JN, Davis AM, Lewis RS, Grossman L (1998) A stellar origin for the short-lived nuclides in the early solar system. Nature 391:559. https://doi.org/10.1038/35325 ADSCrossRefGoogle Scholar
  166. Scheffler H, Elsaesser H (1987) Physics of the galaxy and interstellar matter. Springer, BerlinCrossRefGoogle Scholar
  167. Schönbächler M, Carlson RW, Horan MF, Mock TD, Hauri EH (2008) Silver isotope variations in chondrites: volatile depletion and the initial 107Pd abundance of the solar system. Geochim Cosmochim Acta 72:5330–5341. https://doi.org/10.1016/j.gca.2008.07.032 ADSCrossRefGoogle Scholar
  168. Schramm DN, Wasserburg GJ (1970) Nucleochronologies and the mean age of the elements. Astrophys J 162:57. https://doi.org/10.1086/150634 ADSCrossRefGoogle Scholar
  169. Schramm DN, Tera F, Wasserburg GJ (1970) The isotopic abundance of 26Mg and limits on 26Al in the early solar system. Earth Planet Sci Lett 10:44–59. https://doi.org/10.1016/0012-821X(70)90063-4 ADSCrossRefGoogle Scholar
  170. Share GH, Murphy RJ (1995) Gamma-ray measurements of flare-to-flare variations in ambient solar abundances. Astrophys J 452:933. https://doi.org/10.1086/176360 ADSCrossRefGoogle Scholar
  171. Share GH, Murphy RJ, Ryan J (1997) Solar and stellar gamma ray observations with COMPONE. In: Dermer CD, Strickman MS, Kurfess JD (eds) Proceedings of the fourth Compton symposium. American Institute of Physics conference series, vol 410, pp 17–36. https://doi.org/10.1063/1.54117
  172. Shu FH, Adams FC, Lizano S (1987a) Star formation in molecular clouds - observation and theory. Annu Rev Astron Astrophys 25:23–81.  https://doi.org/10.1146/annurev.aa.25.090187.000323 ADSCrossRefGoogle Scholar
  173. Shu FH, Lizano S, Adams FC (1987b) Star formation in molecular cloud cores. In: Peimbert M, Jugaku J (eds) Star forming regions. IAU symposium, vol 115, pp 417–433CrossRefGoogle Scholar
  174. Shu FH, Shang H, Glassgold AE, Lee T (1997) X-rays and fluctuating X-winds from protostars. Science 277:1475–1479.  https://doi.org/10.1126/science.277.5331.1475 ADSCrossRefGoogle Scholar
  175. Shu FH, Shang H, Gounelle M, Glassgold AE, Lee T (2001) The origin of chondrules and refractory inclusions in chondritic meteorites. Astrophys J 548:1029–1050. https://doi.org/10.1086/319018 ADSCrossRefGoogle Scholar
  176. Shukolyukov A, Lugmair GW (1993a) Fe-60 in eucrites. Earth Planet Sci Lett 119:159–166. https://doi.org/10.1016/0012-821X(93)90013-Y ADSCrossRefGoogle Scholar
  177. Shukolyukov A, Lugmair GW (1993b) Live iron-60 in the early solar system. Science 259:1138–1142.  https://doi.org/10.1126/science.259.5098.1138 ADSCrossRefGoogle Scholar
  178. Simon JI, Young ED (2011) Resetting, errorchrons and the meaning of canonical CAI initial 26Al/ 27Al values. Earth Planet Sci Lett 304:468–482. https://doi.org/10.1016/j.epsl.2011.02.023 ADSCrossRefGoogle Scholar
  179. Simon JI, Young ED, Russell SS, Tonui EK, Dyl KA, Manning CE (2005) A short timescale for changing oxygen fugacity in the solar nebula revealed by high-resolution 26Al- 26Mg dating of CAI rims. Earth Planet Sci Lett 238:272–283. https://doi.org/10.1016/j.epsl.2005.08.004 ADSCrossRefGoogle Scholar
  180. Simonucci S, Taioli S, Palmerini S, Busso M (2013) Theoretical estimates of stellar e captures. I. The half-life of 7Be in evolved stars. Astrophys J 764:118. https://doi.org/10.1088/0004-637X/764/2/118 ADSCrossRefGoogle Scholar
  181. Smith N, Brooks KJ (2007) A census of the carina nebula - II. Energy budget and global properties of the nebulosity. Mon Not R Astron Soc 379:1279–1292. https://doi.org/10.1111/j.1365-2966.2007.12021.x, arXiv:0705.3053ADSCrossRefGoogle Scholar
  182. Sneden C, Cowan JJ, Gallino R (2008) Neutron-capture elements in the early galaxy. Annu Rev Astron Astrophys 46:241–288.  https://doi.org/10.1146/annurev.astro.46.060407.145207 ADSCrossRefGoogle Scholar
  183. Sossi PA, Moynier F, Chaussidon M, Villeneuve J, Kato C, Gounelle M (2017) Early solar system irradiation quantified by linked vanadium and beryllium isotope variations in meteorites. Nat Astron 1:0055ADSCrossRefGoogle Scholar
  184. Srinivasan G, Ulyanov AA, Goswami JN (1994) Ca-41 in the early solar system. Astrophys J 431:L67–L70. https://doi.org/10.1086/187474 ADSCrossRefGoogle Scholar
  185. Srinivasan G, Sahijpal S, Ulyanov AA, Goswami JN (1996) Ion microprobe studies of Efremovka CAIs: II. Potassium isotope composition and 41Ca in the early solar system. Geochim Cosmochim Acta 60:1823–1835. https://doi.org/10.1016/0016-7037(96)00054-3 ADSCrossRefGoogle Scholar
  186. Stoerzer D, Pellas P (1977) Angra DOS Reis - Plutonium distribution and cooling history. Earth Planet Sci Lett 35:285–293. https://doi.org/10.1016/0012-821X(77)90132-7 ADSCrossRefGoogle Scholar
  187. Tachibana S, Huss GR (2003) The initial abundance of 60Fe in the solar system. Astrophys J 588:L41–L44. https://doi.org/10.1086/375362 ADSCrossRefGoogle Scholar
  188. Tachibana S, Huss GR, Kita NT, Shimoda G, Morishita Y (2006) 60Fe in chondrites: debris from a nearby supernova in the early solar system? Astrophys J 639:L87–L90. https://doi.org/10.1086/503201 ADSCrossRefGoogle Scholar
  189. Takigawa A, Miki J, Tachibana S, Huss GR, Tominaga N, Umeda H, Nomoto K (2008) Injection of short-lived radionuclides into the early solar system from a faint supernova with mixing fallback. Astrophys J 688:1382–1387. https://doi.org/10.1086/592184, arXiv:0808.1441ADSCrossRefGoogle Scholar
  190. Tang H, Dauphas N (2012) Abundance, distribution, and origin of 60Fe in the solar protoplanetary disk. Earth Planet Sci Lett 359:248–263. https://doi.org/10.1016/j.epsl.2012.10.011 ADSCrossRefGoogle Scholar
  191. Tatischeff V, Thibaud J (2008) Li production by stellar flares in young open clusters. New Astron Rev 52:423–426. https://doi.org/10.1016/j.newar.2008.06.013 ADSCrossRefGoogle Scholar
  192. Tatischeff V, Kozlovsky B, Kiener J, Murphy RJ (2006) Delayed X- and gamma-ray line emission from solar flare radioactivity. Astrophys J Suppl 165:606–617. https://doi.org/10.1086/505112, arXiv:astro-ph/0604325ADSCrossRefGoogle Scholar
  193. Tatischeff V, Kozlovsky B, Kiener J, Murphy RJ (2007) Radioactive line emission from solar flares. In: ESA special publication, vol 622, p 135ADSGoogle Scholar
  194. Tatischeff V, Thibaud J, Ribas I (2008) Nucleosynthesis in stellar flares. ArXiv e-prints 0801.1777 Google Scholar
  195. Tatischeff V, Duprat J, de Séréville N (2010) A runaway Wolf-Rayet star as the origin of 26Al in the early solar system. Astrophys J 714:L26–L30. https://doi.org/10.1088/2041-8205/714/1/L26 ADSCrossRefGoogle Scholar
  196. Thiemens MH, Heidenreich JE III (1983) The mass-independent fractionation of oxygen - a novel isotope effect and its possible cosmochemical implications. Science 219:1073–1075.  https://doi.org/10.1126/science.219.4588.1073 ADSCrossRefGoogle Scholar
  197. Trigo-Rodríguez JM, García-Hernández DA, Lugaro M, Karakas AI, van Raai M, García Lario P, Manchado A (2009) The role of massive AGB stars in the early solar system composition. Meteorit Planet Sci 44:627–641. arXiv:0812.4358ADSCrossRefGoogle Scholar
  198. Trippella O, Busso M, Palmerini S, Maiorca E, Nucci MC (2016) s-processing in AGB stars revisited. II. Enhanced 13C production through MHD-induced mixing. Astrophys J 818:125. https://doi.org/10.3847/0004-637X/818/2/125 ADSCrossRefGoogle Scholar
  199. Tur C, Heger A, Austin SM (2009) Production of 26Al, 44Ti, and 60Fe in core-collapse supernovae: sensitivity to the rates of the triple alpha and 12C(a,g)16O reactions. ArXiv e-prints 0908.4283 Google Scholar
  200. Urey HC (1955) The cosmic abundances of potassium, uranium, and thorium and the heat balances of the earth, the moon, and mars. Proc Natl Acad Sci 41:127–144.  https://doi.org/10.1073/pnas.41.3.127 ADSCrossRefGoogle Scholar
  201. Urey HC, Donn B (1956) Chemical heating for meteorites. Astrophys J 124:307. https://doi.org/10.1086/146223 ADSCrossRefGoogle Scholar
  202. Vescovi D, Busso M, Palmerini S, Trippella S O anc Cristallo, Piersanti L, Chieffi A, Limongi M, Hoppe P, Kratz KL (2018, in press) On the origin of the early solar system radioactivities. Astrophys JGoogle Scholar
  203. Wadhwa M, Amelin Y, Davis AM, Lugmair GW, Meyer B, Gounelle M, Desch SJ (2007) From dust to planetesimals: implications for the solar protoplanetary disk from short-lived radionuclides. In: Protostars and planets V, pp 835–848Google Scholar
  204. Wasserburg GJ, Fowler WA, Hoyle F (1960) Duration of nucleosynthesis. Phys Rev Lett 4:112–114.  https://doi.org/10.1103/PhysRevLett.4.112 ADSCrossRefGoogle Scholar
  205. Wasserburg GJ, Huneke JC, Burnett DS (1969) Correlations between fission tracks and fission type xenon in meteoritic whitlockite. J Geophys Res 74:4221–4232. https://doi.org/10.1029/JB074i017p04221 ADSCrossRefGoogle Scholar
  206. Wasserburg GJ, Busso M, Gallino R, Raiteri CM (1994) Asymptotic giant branch stars as a source of short-lived radioactive nuclei in the solar nebula. Astrophys J 424:412–428. https://doi.org/10.1086/173899 ADSCrossRefGoogle Scholar
  207. Wasserburg GJ, Gallino R, Busso M, Goswami JN, Raiteri CM (1995) Injection of freshly synthesized Ca-41 in the early solar nebula by an asymptotic giant branch star. Astrophys J 440:L101–L104. https://doi.org/10.1086/187771 ADSCrossRefGoogle Scholar
  208. Wasserburg GJ, Busso M, Gallino R (1996) Abundances of actinides and short-lived nonactinides in the interstellar medium: diverse supernova sources for the r-processes. Astrophys J 466:L109+. https://doi.org/10.1086/310177 ADSCrossRefGoogle Scholar
  209. Wasserburg GJ, Gallino R, Busso M (1998) A test of the supernova trigger hypothesis with 60Fe and 26Al. Astrophys J 500:L189+. https://doi.org/10.1086/311414 ADSCrossRefGoogle Scholar
  210. Wasserburg GJ, Busso M, Gallino R, Nollett KM (2006) Short-lived nuclei in the early solar system: possible AGB sources. Nucl Phys A 777:5–69. https://doi.org/10.1016/j.nuclphysa.2005.07.015, arXiv:astro-ph/0602551ADSCrossRefGoogle Scholar
  211. Wasserburg GJ, Trippella O, Busso M (2015) Isotope anomalies in the Fe-group elements in meteorites and connections to nucleosynthesis in AGB stars. Astrophys J 805:7. https://doi.org/10.1088/0004-637X/805/1/7, arXiv:1503.02256ADSCrossRefGoogle Scholar
  212. Wasserburg GJ, Karakas AI, Lugaro M (2017) Intermediate-mass asymptotic giant branch stars and sources of 26Al, 60Fe, 107Pd, and 182Hf in the solar system. Astrophys J 836:126. https://doi.org/10.3847/1538-4357/836/1/126 ADSCrossRefGoogle Scholar
  213. Wehmeyer B, Pignatari M, Thielemann FK (2017) Inhomogeneous chemical evolution of r-process elements in the galactic halo. In: Kubono S, Kajino T, Nishimura S, Isobe T, Nagataki S, Shima T, Takeda Y (eds) 14th international symposium on nuclei in the cosmos (NIC2016), p 020201.  https://doi.org/10.7566/JPSCP.14.020201
  214. Williams JP, Gaidos E (2007a) On the likelihood of supernova enrichment of protoplanetary disks. Astrophys J 663:L33–L36. https://doi.org/10.1086/519972 ADSCrossRefGoogle Scholar
  215. Williams JP, Gaidos E (2007b) On the likelihood of supernova enrichment of protoplanetary disks. Astrophys J 663:L33–L36. https://doi.org/10.1086/519972, arXiv:0705.3459ADSCrossRefGoogle Scholar
  216. Woosley SE, Heger A (2007) Nucleosynthesis and remnants in massive stars of solar metallicity. Phys Rep 442:269–283. https://doi.org/10.1016/j.physrep.2007.02.009, arXiv:astro-ph/0702176ADSCrossRefGoogle Scholar
  217. Woosley SE, Weaver TA (1995) The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys J Suppl 101:181. https://doi.org/10.1086/192237 ADSCrossRefGoogle Scholar
  218. Young ED (2014) Inheritance of solar short- and long-lived radionuclides from molecular clouds and the unexceptional nature of the solar system. Earth Planet Sci Lett 392:16–27. https://doi.org/10.1016/j.epsl.2014.02.014 ADSCrossRefGoogle Scholar
  219. Young ED (2016) Bayes theorem and early solar short-lived radionuclides: the case for an unexceptional origin for the solar system. Astrophys J 826:129ADSCrossRefGoogle Scholar
  220. Young ED, Simon JI, Galy A, Russell SS, Tonui E, Lovera O (2005) Supra-canonical 26Al/27Al and the residence time of CAIs in the solar protoplanetary disk. Science 308:223–227.  https://doi.org/10.1126/science.1108140 ADSCrossRefGoogle Scholar
  221. Young ED, Gounelle M, Smith RL, Morris MR, Pontoppidan KM (2009) The oxygen isotopic composition of the solar system in a galactic context: new results for CO in young stellar objects and implications for the birth environment of the solar system. In: Lunar and Planetary Institute science conference abstracts, vol 40, p 1967ADSGoogle Scholar
  222. Zinnecker H (2002) From local star formation to global star formation. Astrophys Space Sci 281:147–157. https://doi.org/10.1023/A:1019532503571 ADSCrossRefGoogle Scholar
  223. Zinner E, Göpel C (2002) Aluminum-26 in H4 chondrites: implications for its production and its usefulness as a fine-scale chronometer for early solar system events. Meteorit Planet Sci 37:1001–1013ADSCrossRefGoogle Scholar
  224. Zuckerman B, Song I (2004) Young stars near the sun. Annu Rev Astron Astrophys 42:685–721.  https://doi.org/10.1146/annurev.astro.42.053102.134111 ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Maurizio Busso
    • 1
  1. 1.Università di Perugia and Sezione INFN di PerugiaPerugiaItaly

Personalised recommendations