The Role of Radioactive Isotopes in Astrophysics

  • Donald D. Clayton
Part of the Astrophysics and Space Science Library book series (ASSL, volume 453)


Astronomy with radioactivity can be described as using the quantity of radioactivity within cosmic samples to infer their physical circumstances and history. The quantity of radioactive nuclei is inferred or measured by a variety of techniques reviewed here and in subsequent chapters. We also review the major disciplines of such knowledge in astronomy in the attempt to introduce the reader to its principles. Because the sciences of nucleosynthesis and of radioactivity have been so intertwined, brief histories of each are first given. Descriptions of recent discoveries in these disciplines are relegated to subsequent chapters where they can receive fuller treatment. The scientific disciplines of astronomy using radioactive nuclei are primarily these:


  1. Abbott BP et al, The LIGO scientific collaboration and Virgo collaboration (2017) Phys Rev Lett 119:161101Google Scholar
  2. Alexander CMO’D, Swan P, Walker RM (1990) Nature 348:715–717ADSCrossRefGoogle Scholar
  3. Amari S, Zinner E (1997) In: Bernatowicz T, Zinner E (eds) Astrophysical implications of the laboratory study of presolar materials. American Institute of Physics, Woodbury, p 287CrossRefGoogle Scholar
  4. Amari S, Hoppe P, Zinner E, Lewis RS (1992) Astrophys J 394:L43–L46ADSCrossRefGoogle Scholar
  5. Amari S, Lewis RS, Anders E (1994) Geochim Cosmochim Acta 58:459–470ADSCrossRefGoogle Scholar
  6. Anders E, Zinner E (1993) Meteoritics 28:490–514ADSCrossRefGoogle Scholar
  7. Arcavi I et al (2017) Nature 551:64ADSCrossRefGoogle Scholar
  8. Arendt RG, Dwek E, Moseley SH (1999) Astrophys J 521:234ADSCrossRefGoogle Scholar
  9. Arnett WD (1977) In: Papagiannis MD (ed) Eighth Texas symposium on relativistic astrophysics, vol 302, p 90Google Scholar
  10. Arnett WD (1996) Supernovae and nucleosynthesis: an investigation of the history of matter from the big bang to the present. Princeton University Press, PrincetonGoogle Scholar
  11. Arnould M, Beelen W (1974) Astron Astrophys 33:215ADSGoogle Scholar
  12. Arnould M, Norgaard H (1978) Astron Astrophys 64:195–213ADSGoogle Scholar
  13. Arnould M, Norgaard H, Thielemann FK, Hillebrandt W (1980) Astrophys J 237:931–950ADSCrossRefGoogle Scholar
  14. Beers TC, Christlieb N (2005) Annu Rev Astron Astrophys 43:531ADSCrossRefGoogle Scholar
  15. Bernatowicz TJ, Zinner E (1997) Astrophysical implications of the laboratory study of presolar materials. American Institute of Physics, WoodburyGoogle Scholar
  16. Bernatowicz TJ et al (1987) Nature 330:728–730ADSCrossRefGoogle Scholar
  17. Black DC (1972) Geochim Cosmochim Acta 36:377ADSCrossRefGoogle Scholar
  18. Bodansky D, Clayton DD, Fowler WA (1968a) Phys Rev Lett 20:161ADSCrossRefGoogle Scholar
  19. Bodansky D, Clayton DD, Fowler WA (1968b) Astrophys J Suppl 16:299ADSCrossRefGoogle Scholar
  20. Boggs SE et al (2015) Science 348:670ADSCrossRefGoogle Scholar
  21. Burbidge EM, Burbidge GR, Fowler WA, Hoyle F (1957) Rev Mod Phys 29:547–650ADSCrossRefGoogle Scholar
  22. Burris DL, Pilachowski CA, Armandroff TE, Sneden C, Cowan JJ, Roe H (2000) Astrophys J 544:302ADSCrossRefGoogle Scholar
  23. Butcher HR (1987) Nature 328:127–131ADSCrossRefGoogle Scholar
  24. Cameron AGW (1955) Astrophys J 121:144ADSCrossRefGoogle Scholar
  25. Cameron AGW (1957) CRL 41, Chalk RiverGoogle Scholar
  26. Cameron AGW (1959) Astrophys J 130:429ADSCrossRefGoogle Scholar
  27. Cameron AGW, Truran JW (1977) Icarus 30:447ADSCrossRefGoogle Scholar
  28. Clayton DD (1964) Astrophys J 139:637ADSCrossRefGoogle Scholar
  29. Clayton DD (1968) Principles of stellar evolution and nucleosynthesis. McGraw-Hill, New YorkGoogle Scholar
  30. Clayton DD (1971) Nature 234:291ADSCrossRefGoogle Scholar
  31. Clayton DD (1974) Astrophys J 188:155ADSCrossRefGoogle Scholar
  32. Clayton DD (1975a) Astrophys J 198:151ADSCrossRefGoogle Scholar
  33. Clayton DD (1975b) Astrophys J 199:765–769ADSCrossRefGoogle Scholar
  34. Clayton DD (1975c) Nature 257:36–37ADSCrossRefGoogle Scholar
  35. Clayton DD (1977a) Icarus 32:255–269ADSCrossRefGoogle Scholar
  36. Clayton DD (1977b) Icarus 35:398–410Google Scholar
  37. Clayton DD (1978) Moon Planets 19:109–137ADSCrossRefGoogle Scholar
  38. Clayton DD (1979) Astrophys Spa Sci 65:179–189ADSCrossRefGoogle Scholar
  39. Clayton DD (1981) Astrophys J Lett 244:L97ADSCrossRefGoogle Scholar
  40. Clayton DD (1982) Q J R Astron Soc 23:174–212ADSGoogle Scholar
  41. Clayton DD (1983) Astrophys J 268:381–384ADSCrossRefGoogle Scholar
  42. Clayton DD (1984) Astrophys J 280:144ADSCrossRefGoogle Scholar
  43. Clayton DD (1985) Galactic chemical evolution and nucleocosmochronology: a standard model. In: Arnett WD, Truran W (eds) Challenges and new developments in nucleosynthesis. University of Chicago Press, Chicago, p 65Google Scholar
  44. Clayton DD (1987) Nature 329:397ADSCrossRefGoogle Scholar
  45. Clayton DD (1988) Mon Not R Astron Soc 234:1ADSCrossRefGoogle Scholar
  46. Clayton DD (1999) Meteorit Planet Sci 34:A145–A160ADSCrossRefGoogle Scholar
  47. Clayton DD (2003) Handbook of isotopes in the cosmos. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  48. Clayton DD (2007) Science 318:1876–1877ADSCrossRefGoogle Scholar
  49. Clayton DD, Craddock W (1965) Astrophys J 142:189ADSCrossRefGoogle Scholar
  50. Clayton DD, Fowler WA (1961) Ann Phys 16:51ADSCrossRefGoogle Scholar
  51. Clayton DD, Hoyle F (1974) Astrophys J Lett 187:L101ADSCrossRefGoogle Scholar
  52. Clayton DD, Hoyle F (1976) Astrophys J 203:490ADSCrossRefGoogle Scholar
  53. Clayton DD, Nittler LR (2004) Ann Rev Astron Astrophys 42:39ADSCrossRefGoogle Scholar
  54. Clayton DD, Silk J (1969) Astrophys J Lett 158:L43ADSCrossRefGoogle Scholar
  55. Clayton DD, Ward RA (1978) Astrophys J 224:1000–1006ADSCrossRefGoogle Scholar
  56. Clayton DD, Wickramasinghe NC (1976) Astrophys Spa Sci 42:463–475ADSCrossRefGoogle Scholar
  57. Clayton DD, Fowler WA, Hull TE, Zimmerman BA (1961) Ann Phys 12:331ADSCrossRefGoogle Scholar
  58. Clayton DD, Colgate SA, Fishman GJ (1969) Astrophys J 155:75ADSCrossRefGoogle Scholar
  59. Clayton DD, Leising MD, The LS, Johnson WN, Kurfess JD (1992) Astrophys J 399:L141–L144ADSCrossRefGoogle Scholar
  60. Clayton DD, Hartmann DH, Leising MD (1993) Astrophys J 415:L25ADSCrossRefGoogle Scholar
  61. Clayton DD, Liu W, Dalgarno A (1999) Science 283:1290–1292ADSCrossRefGoogle Scholar
  62. Clayton DD, Deneault E, Meyer BS (2001) Astrophys J 56:480–493ADSCrossRefGoogle Scholar
  63. Colgan SWJ et al (1994) Astrophys J 427:874ADSCrossRefGoogle Scholar
  64. Colgate SSA, Fishman GJ, Clayton DD (1969) Astrophys J 155:75ADSCrossRefGoogle Scholar
  65. Deneault EN, Clayton DD, Heger A (2003) Astrophys J 594:312ADSCrossRefGoogle Scholar
  66. Deneault EN, Meyer BS, Clayton DD (2006) Astrophys J 638:234–240ADSCrossRefGoogle Scholar
  67. Diehl R et al (1995) Astron Astrophys 298:445ADSGoogle Scholar
  68. Diehl R et al (2014) Science 345:1162ADSCrossRefGoogle Scholar
  69. Dunne L, Eales S, Ivison R, Morgan H, Edmunds M (2003) Nature 424:285–287ADSCrossRefGoogle Scholar
  70. Dwek E, Moseley SH, Glaccum W, Graham JR, Loewenstein RF, Silverberg RF, Smith RK (1992) Astrophys J 389:L21–L24ADSCrossRefGoogle Scholar
  71. Ebel D, Grossman L (2000) Geochim Cosmochim Acta 64:339–366ADSCrossRefGoogle Scholar
  72. Fowler WA (1971) New observations and old nucleocosmochronologies. In: Reines F (ed) Cosmology, fusion and other matters. University of Colorado, Boulder, pp 67–123Google Scholar
  73. Fowler WA, Hoyle F (1960) Ann Phys 10:280ADSCrossRefGoogle Scholar
  74. Fowler WA, Wasserburg GJ, Hoyle F (1960) Phys Rev Lett 4:112ADSCrossRefGoogle Scholar
  75. Fryxell B, Müller E, Arnett D (1991) Astrophys J 367:619–634ADSCrossRefGoogle Scholar
  76. Gao Y, Solomon PM (2004) Astrophys J 606:271ADSCrossRefGoogle Scholar
  77. Gearhart RA, Wheeler JC, Swartz DA (1999) Astrophys J 510:944–966ADSCrossRefGoogle Scholar
  78. Gilroy KK, Sneden C, Pilachowski CA, Cowan JJ (1988) Astrophys J 327:298ADSCrossRefGoogle Scholar
  79. Gray CM, Compston W (1974) Nature 251:495ADSCrossRefGoogle Scholar
  80. Grefenstette BW et al (2014) Nature 506:339ADSCrossRefGoogle Scholar
  81. Haxel O, Jensen JH, Suess HE (1949) Phys Rev 75:1766ADSCrossRefGoogle Scholar
  82. Hoppe P et al (1996) Science 272:1314–1316ADSCrossRefGoogle Scholar
  83. Hoyle F (1946) Mon Not R Astron Soc 106:343–383ADSCrossRefGoogle Scholar
  84. Hoyle F (1954) Astrophys J Suppl 1:121–146ADSCrossRefGoogle Scholar
  85. Hoyle F, Fowler WA (1960) Astrophys J 132:565ADSCrossRefGoogle Scholar
  86. Hoyle F, Wickramasinghe WA (1970) Nature 226:62–63ADSCrossRefGoogle Scholar
  87. Hudson GB, Kennedy BM, Podosek FA, Hohenberg CM (1989) Proceedings of the 19th lunar and planetary science conference, vol 19, pp 547–557Google Scholar
  88. Huss GR, Meyer BM, Srinivasan G, Goswami JN, Sahijpal S (2009) Geochim Cosmochim Acta 73:4922ADSCrossRefGoogle Scholar
  89. Iyudin AF et al (1994) Astron Astrophys 284:L1ADSGoogle Scholar
  90. Johnson WN, Harnden FR, Haymes RC (1972) Astrophys J 172:L1ADSCrossRefGoogle Scholar
  91. Kaeppeler F et al (1982) Astrophys J 257:821ADSCrossRefGoogle Scholar
  92. Kasen D et al (2017) Nature 551:80ADSGoogle Scholar
  93. Kozasa T, Hasegawa H (1987) Prog Theor Phys 77:1402ADSCrossRefGoogle Scholar
  94. Kozasa T, Hasegawa H, Nomoto K (1989) Astrophys J 344:325ADSCrossRefGoogle Scholar
  95. Kozasa T, Hasegawa H, Nomoto K (1991) Astron Astrophys 249:474ADSGoogle Scholar
  96. Kurfess JD et al (1992) Astrophys J Lett 399:L137ADSCrossRefGoogle Scholar
  97. Lattimer JM, Schramm DN, Grossman L (1978) Astrophys J 219:230ADSCrossRefGoogle Scholar
  98. Lazzati D, Heger A (2016) Astrophys J 817:134ADSCrossRefGoogle Scholar
  99. Lee T, Papanastassious DA, Wasserburg GJ (1977) Astrophys J 211:L107ADSCrossRefGoogle Scholar
  100. Leising MD, Share GH (1990) Astrophys J 357:638ADSCrossRefGoogle Scholar
  101. Liu W, Dalgarno A (1994) Astrophys J 428:769ADSCrossRefGoogle Scholar
  102. Liu W, Dalgarno A (1995) Astrophys J 454:472ADSCrossRefGoogle Scholar
  103. MacCallum CJ, Huters JF, Stang PD, Leventhal M (1987) Astrophys J 317:877ADSCrossRefGoogle Scholar
  104. Mahoney WA, Ling JC, Jacobson AS, Lingenfelter RE (1982) Astrophys J 262:742ADSCrossRefGoogle Scholar
  105. Mahoney WA, Ling JC, Wheaton AS, Jacobson AS (1984) Astrophys J 286:578ADSCrossRefGoogle Scholar
  106. McKeegan KD (2007) Meteorit Planet Sci 42:1045–1054ADSCrossRefGoogle Scholar
  107. Nittler LR et al (1996) Astrophys J 462:L31–L34ADSCrossRefGoogle Scholar
  108. Nittler LR et al (1997) Astrophys J 483:475–495ADSCrossRefGoogle Scholar
  109. Pian E et al (2017) Nature 551:67ADSGoogle Scholar
  110. Ramaty R, Lingenfelter RE (1977) Astrophys J 213:L5ADSCrossRefGoogle Scholar
  111. Reynolds JH (1960) Phys Rev Lett 4:8ADSCrossRefGoogle Scholar
  112. Rutherford E (1929) Nature 123:313–314ADSCrossRefGoogle Scholar
  113. Seeger PA, Fowler WA, Clayton DD (1965) Astrophys J 11:121ADSCrossRefGoogle Scholar
  114. Share GH et al (1985) Astrophys J 292:L61ADSCrossRefGoogle Scholar
  115. Smartt BJ et al (2017) Nature 551:75ADSGoogle Scholar
  116. Srinivasan B, Anders E (1978) Science 201:51ADSCrossRefGoogle Scholar
  117. Srinivasan B, Sahijpal S, Ulyanov AA, Goswami JN (1996) Geochim Cosmochim Acta 60:1823–1835ADSCrossRefGoogle Scholar
  118. Starrfield S, Truran JW, Sparks WM, Kutter GS (1972) Astrophys J 176:169ADSCrossRefGoogle Scholar
  119. Suess HE, Urey HC (1956) Rev Mod Phys 28:53ADSCrossRefGoogle Scholar
  120. Suntzeff NB, Phillips MM, Elias JH, Walker AR, Depoy DL (1992) Astrophys J 384:L33–L36ADSCrossRefGoogle Scholar
  121. Tajitsu A et al (2015) Nature 518:381ADSCrossRefGoogle Scholar
  122. The LS, Burrows A, Bussard R (1990) Astrophys J 352:731ADSCrossRefGoogle Scholar
  123. The LS, Clayton DD, Diehl R et al (2006) Astron Astrophys 450:1037ADSCrossRefGoogle Scholar
  124. Timmes FX, Woosley SE, Weaver TA (1995) Astrophys J Suppl 98:617ADSCrossRefGoogle Scholar
  125. Todini P, Ferrara A (2001) Mon Not R Astron Soc 325:726ADSCrossRefGoogle Scholar
  126. Travaglio C et al (1999) Astrophys J 510:325ADSCrossRefGoogle Scholar
  127. Truran JW (1981) Astron Astrophys 97:391–393ADSGoogle Scholar
  128. Truran JW (1982) Nuclear theory of novae. In: Barnes CA, Clayton DD, Schramm DN (eds) Essays in nuclear astrophysics. Cambridge University Press, Cambridge, p 467Google Scholar
  129. Truran JW, Arnett WD, Cameron AGW (1967) Can J Phys 45:2315ADSCrossRefGoogle Scholar
  130. von Ballmoos P, Diehl R, Schonfelder V (1987) Astrophys J 318:654ADSCrossRefGoogle Scholar
  131. Wasserburg GJ, Papanastassiou DA (1982) Some shortlived nucleides in the early solar system. In: Barnes CA, Clayton DD, Schramm DN (eds) Essays in nuclear astrophysics. Cambridge University Press, Cambridge, p 77Google Scholar
  132. Weaver TA, Woosley SE (1993) Phys Rep 227:65ADSCrossRefGoogle Scholar
  133. Wooden DH et al (1993) Astrophys J Suppl 88:477–508ADSCrossRefGoogle Scholar
  134. Woosley SE (1999) Astrophys J 525:924Google Scholar
  135. Woosley SE, Weaver TA (1980) Astrophys J 238:1017ADSCrossRefGoogle Scholar
  136. Woosley SE, Weaver TA (1995) Astrophys J Suppl 101:181ADSCrossRefGoogle Scholar
  137. Woosley SE, Arnett WD, Clayton DD (1973) Astrophys J Suppl 26:231ADSCrossRefGoogle Scholar
  138. Yokoi K, Takahashi K, Arnould M (1983) Astron Astrophys 117:65ADSGoogle Scholar
  139. Zinner E, Tang M, Anders E (1989) Geochim Cosmochim Acta 53:3273–3290ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Donald D. Clayton
    • 1
  1. 1.Clemson UniversityClemsonUSA

Personalised recommendations