Advertisement

Cosmic Evolution of Isotopic Abundances: Basics

  • Roland Diehl
  • Nikos Prantzos
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 453)

Abstract

The description of the tempo-spatial evolution of the composition of cosmic gas on galactic scales is called ‘galactic chemical evolution’. It combines the knowledge about cosmic sources of nuclei (that is their internal workings and nucleosynthesis yields, and their properties such as frequency of occurrence and spatial distribution), with knowledge about the formation and evolution of these sources in the greater context of a galaxy, as well as transport processes of gas within galaxies. It provides a useful framework, allowing us to interpret the large amount of observational data concerning the chemical composition of stars, galaxies and the interstellar medium.

References

  1. Armstrong JW, Rickett BJ, Spangler SR (1995) Electron density power spectrum in the local interstellar medium. Astrophys J 443:209–221. https://doi.org/10.1086/175515 ADSCrossRefGoogle Scholar
  2. Audouze J, Tinsley BM (1976) Chemical evolution of galaxies. Annu Rev Astron Astrophys 14:43–79.  https://doi.org/10.1146/annurev.aa.14.090176.000355 ADSCrossRefGoogle Scholar
  3. Beck R (2008) Galactic and extragalactic magnetic fields. In: American Institute of Physics conference series, vol 1085, pp 83–96. https://doi.org/10.1063/1.3076806 ADSGoogle Scholar
  4. Bell EF, Zucker DB, Belokurov V, Sharma S, Johnston KV, Bullock JS, Hogg DW, Jahnke K, de Jong JTA, Beers TC, Evans NW, Grebel EK, Ivezic Z, Koposov SE, Rix HW, Schneider DP, Steinmetz M, Zolotov A (2007) The accretion origin of the milky way’s stellar halo. ArXiv e-prints 706, 0706.0004 ADSGoogle Scholar
  5. Beuermann K, Kanbach G, Berkhuijsen EM (1985) Radio structure of the galaxy - thick disk and thin disk at 408 MHz. Astron Astrophys 153:17–34ADSGoogle Scholar
  6. Bienaymé O, Soubiran C, Mishenina TV, Kovtyukh VV, Siebert A (2006) Vertical distribution of galactic disk stars. Astron Astrophys. arXiv:astro-ph/0510431
  7. Binney JJ, Evans NW (2001) Cuspy dark matter haloes and the Galaxy. Mon Not R Astron Soc 327:L27–L31. https://doi.org/10.1046/j.1365-8711.2001.04968.x, astro-ph/0108505 ADSCrossRefGoogle Scholar
  8. Blitz L, Rosolowsky E (2006) The role of pressure in GMC formation II: the H2-pressure relation. Astrophys J 650:933–944. https://doi.org/10.1086/505417, astro-ph/0605035 ADSCrossRefGoogle Scholar
  9. Boissier S, Prantzos N (1999) Chemo-spectral evolution of the milky way and of spiral disks. Astrophys Space Sci 265:409–410. https://doi.org/10.1023/A:1002181826858 ADSCrossRefGoogle Scholar
  10. Boulanger F, Perault M (1988) Diffuse infrared emission from the galaxy. I - solar neighborhood. Astrophys J 330:964–985. https://doi.org/10.1086/166526 ADSCrossRefGoogle Scholar
  11. Boulanger F, Abergel A, Bernard JP, Burton WB, Desert FX, Hartmann D, Lagache G, Puget JL (1996) The dust/gas correlation at high Galactic latitude. Astron Astrophys 312:256–262ADSGoogle Scholar
  12. Breitschwerdt D (2001) Modeling the local interstellar medium. Astrophys Space Sci 276:163–176ADSCrossRefGoogle Scholar
  13. Breitschwerdt D (2004) Self-consistent modelling of the interstellar medium. Astrophys Space Sci 289:489–498. https://doi.org/10.1023/B:ASTR.0000014982.31688.bf, arXiv:astro-ph/0303237 ADSCrossRefGoogle Scholar
  14. Brown JC, Haverkorn M, Gaensler BM, Taylor AR, Bizunok NS, McClure-Griffiths NM, Dickey JM, Green AJ (2007) Rotation measures of extragalactic sources behind the southern galactic plane: new insights into the large-scale magnetic field of the inner milky way. Astrophys J 663:258–266. https://doi.org/10.1086/518499, arXiv:0704.0458 ADSCrossRefGoogle Scholar
  15. Calzetti D, Kennicutt RC (2009) The new frontier: galactic-scale star formation. Publ Astron Soc Pac 121:937–941. https://doi.org/10.1086/605617, 0907.0203 ADSCrossRefGoogle Scholar
  16. Cameron AGW, Truran JW (1971) The chemical evolution of the galaxy. J Roy Soc Can 65:1ADSGoogle Scholar
  17. Cartledge SIB, Lauroesch JT, Meyer DM, Sofia UJ (2006) The homogeneity of interstellar elemental abundances in the galactic disk. Astrophys J 641:327–346. https://doi.org/10.1086/500297, astro-ph/0512312 ADSCrossRefGoogle Scholar
  18. Casagrande L, Schönrich R, Asplund M, Cassisi S, Ramírez I, Meléndez J, Bensby T, Feltzing S (2011) New constraints on the chemical evolution of the solar neighbourhood and Galactic disc(s). Improved astrophysical parameters for the Geneva-Copenhagen Survey. Astron Astrophys 530:A138. https://doi.org/10.1051/0004-6361/201016276, 1103.4651 ADSCrossRefGoogle Scholar
  19. Case GL, Bhattacharya D (1998) A new sigma -d relation and its application to the galactic supernova remnant distribution. Astrophys J 504:761, arXiv:astro-ph/9807162
  20. Cerviño M, Knödlseder J, Schaerer D, von Ballmoos P, Meynet G (2000) Gamma-ray line emission from OB associations and young open clusters. I. Evolutionary synthesis models. Astron Astrophys 363:970–983. arXiv:astro-ph/0010283
  21. Chabrier G (2003) Galactic stellar and substellar initial mass function. Publ Astron Soc Pac 115:763–795. https://doi.org/10.1086/376392, astro-ph/0304382 ADSCrossRefGoogle Scholar
  22. Chabrier G (2005) The initial mass function: from salpeter 1955 to 2005. In: Corbelli E, Palla F, Zinnecker H (eds) The initial mass function 50 years later, astrophysics and space science library, vol 327, p 41. https://doi.org/10.1007/978-1-4020-3407-7_5, astro-ph/0409465
  23. Chabrier G, Hennebelle P, Charlot S (2014) Variations of the stellar initial mass function in the progenitors of massive early-type galaxies and in extreme starburst environments. Astrophys J 796:75. https://doi.org/10.1088/0004-637X/796/2/75, 1409.8466 ADSCrossRefGoogle Scholar
  24. Chiappini C, Matteucci F, Gratton R (1997) The chemical evolution of the galaxy: the two-infall model. Astrophys J 477:765–780. https://doi.org/10.1086/303726, astro-ph/9609199 ADSCrossRefGoogle Scholar
  25. Chieffi A, Limongi M (2004) Explosive yields of massive stars from Z = 0 to Z = Z. Astrophys J 608:405–410. https://doi.org/10.1086/392523, arXiv:astro-ph/0402625 ADSCrossRefGoogle Scholar
  26. Chomiuk L, Povich MS (2011) Toward a unification of star formation rate determinations in the milky way and other galaxies. Astron J 142:197. https://doi.org/10.1088/0004-6256/142/6/197, 1110.4105 ADSCrossRefGoogle Scholar
  27. Clayton DD (1968) Principles of stellar evolution and nucleosynthesis. McGraw-Hill, New YorkGoogle Scholar
  28. Clayton DD (1985) Galactic chemical evolution and nucleocosmochronology: a standard model. In: Arnett WD, Truran JW (eds) Nucleosynthesis: challenges and new developments. University of Chicago Press, Chicago, p 65Google Scholar
  29. Clayton DD (1988) Nuclear cosmochronology within analytic models of the chemical evolution of the solar neighbourhood. Mon Not R Astron Soc 234:1–36.  https://doi.org/10.1093/mnras/234.1.1 ADSCrossRefGoogle Scholar
  30. Cordes JM, Lazio TJW (2002) NE2001.I. A new model for the galactic distribution of free electrons and its fluctuations. ArXiv Astrophysics e-prints. astro-ph/0207156
  31. Cowley C (1995) Introduction to cosmochemistry. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  32. Crutcher RM (1999) Magnetic fields in molecular clouds: observations confront theory. Astrophys J 520:706–713. https://doi.org/10.1086/307483 ADSCrossRefGoogle Scholar
  33. Crutcher RM (2007) Magnetic fields in molecular clouds. EAS Publications Ser 23:37–54.  https://doi.org/10.1051/eas:2007004 CrossRefGoogle Scholar
  34. Dame TM (1993) The distribution of neutral gas in the milky way. In: Holt SS, Verter F (eds) Back to the galaxy. American Institute of Physics conference series, vol 278, pp 267–278Google Scholar
  35. Diehl R, Halloin H, Kretschmer K, Lichti GG, Schönfelder V, Strong AW, von Kienlin A, Wang W, Jean P, Knödlseder J, Roques JP, Weidenspointner G, Schanne S, Hartmann DH, Winkler C, Wunderer C (2006) Radioactive 26al from massive stars in the galaxy. Nature 439:45–47. arXiv:astro-ph/0601015 ADSCrossRefGoogle Scholar
  36. Edvardsson B, Andersen J, Gustafsson B, Lambert DL, Nissen PE, Tomkin J (1993a) The chemical evolution of the galactic disk - part one - analysis and results. Astron Astrophys 275:101ADSGoogle Scholar
  37. Edvardsson B, Andersen J, Gustafsson B, Lambert DL, Nissen PE, Tomkin J (1993b) The chemical evolution of the galactic disk - part two - observational data. Astron Astrophys Suppl 102:603ADSGoogle Scholar
  38. Eggen OJ, Lynden-Bell D, Sandage AR (1962) Evidence from the motions of old stars that the Galaxy collapsed. Astrophys J 136:748. https://doi.org/10.1086/147433 ADSCrossRefGoogle Scholar
  39. Elmegreen BG (2002) Star formation from large to small scales. Astrophys Space Sci 281:83–95ADSCrossRefGoogle Scholar
  40. Englmaier P, Gerhard O (1999) Gas dynamics and large-scale morphology of the Milky Way galaxy. Mon Not R Astron Soc 304:512–534ADSCrossRefGoogle Scholar
  41. Feltzing S, Holmberg J, Hurley JR (2001) The solar neighbourhood age-metallicity relation - does it exist? Astron Astrophys 377:911–924. https://doi.org/10.1051/0004-6361:20011119, astro-ph/0108191 ADSCrossRefGoogle Scholar
  42. Ferriere K (1998) Global model of the interstellar medium in our Galaxy with new constraints on the hot gas component. Astrophys J 497:759. https://doi.org/10.1086/305469 ADSCrossRefGoogle Scholar
  43. Ferrière KM (2001) The interstellar environment of our galaxy. Rev Mod Phys 73:1031–1066. arXiv:astro-ph/0106359 ADSCrossRefGoogle Scholar
  44. Ferrière K, Gillard W, Jean P (2007) Spatial distribution of interstellar gas in the innermost 3 kpc of our galaxy. Astron Astrophys 467:611–627. https://doi.org/10.1051/0004-6361:20066992 ADSCrossRefGoogle Scholar
  45. Figer DF, Rich RM, Kim SS, Morris M, Serabyn E (2004) An extended star formation history for the galactic center from hubble space telescope nicmos observations. Astrophys J 601:319–339. arXiv:astro-ph/0309757 ADSCrossRefGoogle Scholar
  46. Flynn C, Holmberg J, Portinari L, Fuchs B, Jahreiß H (2006) On the mass-to-light ratio of the local galactic disc and the optical luminosity of the galaxy. Mon Not R Astron Soc 372:1149–1160. arXiv:astro-ph/0608193 ADSCrossRefGoogle Scholar
  47. François P, Matteucci F, Cayrel R, Spite M, Spite F, Chiappini C (2004) The evolution of the milky way from its earliest phases: constraints on stellar nucleosynthesis. Astron Astrophys 421:613–621. https://doi.org/10.1051/0004-6361:20034140, astro-ph/0401499 ADSCrossRefGoogle Scholar
  48. Freudenreich HT (1998) A cobe model of the galactic bar and disk. Astrophys J 492:495, arXiv:astro-ph/9707340
  49. Frisch PC, Bzowski M, Grün E, Izmodenov V, Krüger H, Linsky JL, McComas DJ, Möbius E, Redfield S, Schwadron N, Shelton R, Slavin JD, Wood BE (2009) The galactic environment of the sun: interstellar material inside and outside of the heliosphere. Space Sci Rev 146:235–273. https://doi.org/10.1007/s11214-009-9502-0 ADSCrossRefGoogle Scholar
  50. Fukugita M, Peebles PJE (2004) The cosmic energy inventory. Astrophys J 616:643–668. https://doi.org/10.1086/425155, astro-ph/0406095 ADSCrossRefGoogle Scholar
  51. Gaidos E, Krot AN, Williams JP, Raymond SN (2009) 26Al and the formation of the solar system from a molecular cloud contaminated by Wolf-Rayet winds. Astrophys J 696:1854–1863. https://doi.org/10.1088/0004-637X/696/2/1854, 0901.3364 ADSCrossRefGoogle Scholar
  52. Gentile G, Tonini C, Salucci P (2007) Λcdm halo density profiles: where do actual halos converge to nfw ones? Astron Astrophys 467:925–931. arXiv:astro-ph/0701550 ADSCrossRefGoogle Scholar
  53. Gillessen S, Eisenhauer F, Trippe S, Alexander T, Genzel R, Martins F, Ott T (2008) Monitoring stellar orbits around the massive black hole in the galactic center. ArXiv e-prints 0810.4674 Google Scholar
  54. Gilmore G, Reid N (1983) New light on faint stars. iii - galactic structure towards the south pole and the galactic thick disc. Mon Not R Astron Soc 202:1025–1047ADSCrossRefGoogle Scholar
  55. Goldsmith PF (1987) Molecular clouds - an overview. In: Hollenbach DJ, Thronson HA Jr (eds) Interstellar processes, astrophysics and space science library, vol 134, pp 51–70CrossRefGoogle Scholar
  56. Grand RJJ, Kawata D, Cropper M (2014) Orbits of radial migrators and non-migrators around a spiral arm in N-body simulations. Mon Not R Astron Soc 439:623–638.  https://doi.org/10.1093/mnras/stt2483, 1310.2952 ADSCrossRefGoogle Scholar
  57. Groenewegen MAT, Udalski A, Bono G (2008) The distance to the galactic centre based on population ii cepheids and rr lyrae stars. Astron Astrophys 481:441–448. arXiv:0801.2652 ADSCrossRefGoogle Scholar
  58. Guibert J, Lequeux J, Viallefond F (1978) Star formation in interstellar gas density in our galaxy. Astron Astrophys 68:1–2ADSGoogle Scholar
  59. Han JL, Manchester RN, Berkhuijsen EM, Beck R (1997) Antisymmetric rotation measures in our Galaxy: evidence for an A0 dynamo. Astron Astrophys 322:98–102ADSGoogle Scholar
  60. Han JL, Manchester RN, Qiao GJ (1999) Pulsar rotation measures and the magnetic structure of our Galaxy. Mon Not R Astron Soc 306:371–380. arXiv:astro-ph/9903101 ADSCrossRefGoogle Scholar
  61. Han JL, Ferriere K, Manchester RN (2004) The spatial energy spectrum of magnetic fields in our Galaxy. Astrophys J 610:820–826. https://doi.org/10.1086/421760, arXiv:astro-ph/0404221 ADSCrossRefGoogle Scholar
  62. Han JL, Manchester RN, Lyne AG, Qiao GJ, van Straten W (2006) Pulsar rotation measures and the large-scale structure of the galactic magnetic field. Astrophys J 642:868–881. https://doi.org/10.1086/501444, arXiv:astro-ph/0601357 ADSCrossRefGoogle Scholar
  63. Heckman TM, Armus L, Miley GK (1990) On the nature and implications of starburst-driven galactic superwinds. Astrophys J Suppl 74:833–868. https://doi.org/10.1086/191522 ADSCrossRefGoogle Scholar
  64. Heiles C (1996) The local direction and curvature of the galactic magnetic field derived from starlight polarization. Astrophys J 462:316. https://doi.org/10.1086/177153 ADSCrossRefGoogle Scholar
  65. Heiles C, Troland TH (2005) The millennium arecibo 21 centimeter absorption-line survey. IV. Statistics of magnetic field, column density, and turbulence. Astrophys J 624:773–793. https://doi.org/10.1086/428896, arXiv:astro-ph/0501482 ADSCrossRefGoogle Scholar
  66. Holmberg J, Flynn C (2004) The local surface density of disc matter mapped by Hipparcos. Mon Not R Astron Soc 352:440–446. arXiv:astro-ph/0405155 ADSCrossRefGoogle Scholar
  67. Holmberg J, Nordström B, Andersen J (2007) The Geneva-Copenhagen survey of the Solar neighbourhood II. New uvby calibrations and rediscussion of stellar ages, the G dwarf problem, age-metallicity diagram, and heating mechanisms of the disk. Astron Astrophys 475:519–537. https://doi.org/10.1051/0004-6361:20077221, 0707.1891 ADSCrossRefGoogle Scholar
  68. Inoue M, Tabara H (1981) Structure of the galactic magnetic field in the solar neighborhood. Publ Astron Soc Jpn 33:603ADSGoogle Scholar
  69. Iwamoto K, Brachwitz F, Nomoto K, Kishimoto N, Umeda H, Hix WR, Thielemann FK (1999) Nucleosynthesis in Chandrasekhar mass models for type ia supernovae and constraints on progenitor systems and burning-front propagation. Astrophys J Suppl 125:439–462. arXiv:astro-ph/0002337 ADSCrossRefGoogle Scholar
  70. Jappsen AK, Klessen RS, Larson RB, Li Y, Mac Low MM (2005) The stellar mass spectrum from non-isothermal gravoturbulent fragmentation. Astron Astrophys 435:611–623. https://doi.org/10.1051/0004-6361:20042178, astro-ph/0410351 ADSCrossRefGoogle Scholar
  71. Jones A (2009) The role of dust in the interstellar medium: dust sources and dust evolution. In: Pagani L, Gerin M (eds) EAS publications series, vol 34, pp 107–118.  https://doi.org/10.1051/eas:0934008 CrossRefGoogle Scholar
  72. Jurić M, Ivezić Ž, Brooks A, Lupton RH, Schlegel D, Finkbeiner D, Padmanabhan N, Bond N, Sesar B, Rockosi CM, Knapp GR, Gunn JE, Sumi T, Schneider DP, Barentine JC, Brewington HJ, Brinkmann J, Fukugita M, Harvanek M, Kleinman SJ, Krzesinski J, Long D, Neilsen EH Jr, Nitta A, Snedden SA, York DG (2008) The milky way tomography with sdss. i. Stellar number density distribution. Astrophys J 673:864–914ADSCrossRefGoogle Scholar
  73. Kalberla PMW, Dedes L (2008) Global properties of the HI distribution in the outer Milky Way. ArXiv e-prints 804. 0804.4831 ADSGoogle Scholar
  74. Kazantzidis S, Kravtsov AV, Zentner AR, Allgood B, Nagai D, Moore B (2004) The effect of gas cooling on the shapes of dark matter halos. Astrophys J 611:L73–L76. https://doi.org/10.1086/423992, astro-ph/0405189 ADSCrossRefGoogle Scholar
  75. Kennicutt RC Jr (1998) Star formation in Galaxies along the hubble sequence. Annu Rev Astron Astrophys 36:189–232.  https://doi.org/10.1146/annurev.astro.36.1.189, arXiv:astro-ph/9807187 ADSCrossRefGoogle Scholar
  76. Kroupa P (2002) The initial mass function of stars: evidence for uniformity in variable systems. Science 295:82–91.  https://doi.org/10.1126/science.1067524, arXiv:astro-ph/0201098 ADSCrossRefGoogle Scholar
  77. Kroupa P, Weidner C, Pflamm-Altenburg J, Thies I, Dabringhausen J, Marks M, Maschberger T (2013) The stellar and sub-stellar initial mass function of simple and composite populations, p 115. https://doi.org/10.1007/978-94-007-5612-0
  78. Krumholz MR (2014) The big problems in star formation: the star formation rate, stellar clustering, and the initial mass function. Phys Rep 539:49–134. https://doi.org/10.1016/j.physrep.2014.02.001, 1402.0867 ADSMathSciNetCrossRefGoogle Scholar
  79. Kubryk M, Prantzos N, Athanassoula E (2013) Radial migration in a bar-dominated disc galaxy - I. Impact on chemical evolution. Mon Not R Astron Soc 436:1479–1491.  https://doi.org/10.1093/mnras/stt1667 ADSCrossRefGoogle Scholar
  80. Kubryk M, Prantzos N, Athanassoula E (2015a) Evolution of the Milky Way with radial motions of stars and gas. I. The solar neighbourhood and the thin and thick disks. Astron Astrophys 580:A126. https://doi.org/10.1051/0004-6361/201424171, 1412.0585 ADSCrossRefGoogle Scholar
  81. Kubryk M, Prantzos N, Athanassoula E (2015b) Evolution of the Milky Way with radial motions of stars and gas. II. The evolution of abundance profiles from H to Ni. Astron Astrophys 580:A127. https://doi.org/10.1051/0004-6361/201424599, 1412.4859 ADSCrossRefGoogle Scholar
  82. Kulkarni SR, Heiles C (1987) The atomic component. In: Hollenbach DJ, Thronson HA Jr (eds) Interstellar processes. Astrophysics and space science library, vol 134, pp 87–122CrossRefGoogle Scholar
  83. Launhardt R, Zylka R, Mezger PG (2002) The nuclear bulge of the galaxy. iii. Large-scale physical characteristics of stars and interstellar matter. Astron Astrophys 384:112–139. arXiv:astro-ph/0201294 ADSCrossRefGoogle Scholar
  84. Limongi M, Chieffi A (2009) Presupernova evolution and explosion of massive stars: the role of mass loss during the Wolf-Rayet stage. Mem Soc Ast Ital 80:151ADSGoogle Scholar
  85. Liszt HS, Burton WB (1980) The gas distribution in the central region of the Galaxy. III - A barlike model of the inner-Galaxy gas based on improved HI data. Astrophys J 236:779–797. https://doi.org/10.1086/157803 ADSCrossRefGoogle Scholar
  86. Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591:1220–1247. https://doi.org/10.1086/375492 ADSCrossRefGoogle Scholar
  87. Loebman SR, Roškar R, Debattista VP, Ivezić Ž, Quinn TR, Wadsley J (2011) The genesis of the Milky Way’s thick disk via stellar migration. Astrophys J 737:8. https://doi.org/10.1088/0004-637X/737/1/8, 1009.5997 ADSCrossRefGoogle Scholar
  88. Lyne AG, Manchester RN, Taylor JH (1985) The galactic population of pulsars. Mon Not R Astron Soc 213:613–639ADSCrossRefGoogle Scholar
  89. Maness H, Martins F, Trippe S, Genzel R, Graham JR, Sheehy C, Salaris M, Gillessen S, Alexander T, Paumard T, Ott T, Abuter R, Eisenhauer F (2007) Evidence for a long-standing top-heavy initial mass function in the central parsec of the galaxy. Astrophys J 669:1024–1041. arXiv:0707.2382 ADSCrossRefGoogle Scholar
  90. Mannucci F, Della Valle M, Panagia N, Cappellaro E, Cresci G, Maiolino R, Petrosian A, Turatto M (2005) The supernova rate per unit mass. Astron Astrophys 433:807–814. https://doi.org/10.1051/0004-6361:20041411, astro-ph/0411450 ADSCrossRefGoogle Scholar
  91. Maoz D, Graur O (2017) Star formation, supernovae, iron, and α: consistent cosmic and galactic histories. Astrophys J 848:25. https://doi.org/10.3847/1538-4357/aa8b6e, 1703.04540 ADSCrossRefGoogle Scholar
  92. Matteucci F, Francois P (1989) Galactic chemical evolution - abundance gradients of individual elements. Mon Not R Astron Soc 239:885–904.  https://doi.org/10.1093/mnras/239.3.885 ADSCrossRefGoogle Scholar
  93. McKee CF, Ostriker EC (2007) Theory of star formation. Annu Rev Astron Astrophys 45:565–687.  https://doi.org/10.1146/annurev.astro.45.051806.110602, 0707.3514 ADSCrossRefGoogle Scholar
  94. McKee CF, Williams JP (1997) The luminosity function of ob associations in the galaxy. Astrophys J 476:144ADSCrossRefGoogle Scholar
  95. Men H, Ferriere K, Han JL (2008) Observational constraints on models for the interstellar magnetic field in the Galactic disk. ArXiv e-prints 805. 0805.3454 ADSGoogle Scholar
  96. Minchev I, Chiappini C, Martig M (2013) Chemodynamical evolution of the Milky Way disk. I. The solar vicinity. Astron Astrophys 558:A9. https://doi.org/10.1051/0004-6361/201220189, 1208.1506 ADSCrossRefGoogle Scholar
  97. Minter AH, Spangler SR (1996) Observation of turbulent fluctuations in the interstellar plasma density and magnetic field on spatial scales of 0.01 to 100 parsecs. Astrophys J 458:194. https://doi.org/10.1086/176803 ADSCrossRefGoogle Scholar
  98. Nakanishi H, Sofue Y (2003) Three-dimensional distribution of the ISM in the Milky Way Galaxy: I. The H I disk. Publ Astron Soc Jpn 55:191–202. arXiv:astro-ph/0304338 ADSCrossRefGoogle Scholar
  99. Nakanishi H, Sofue Y (2006) Three-dimensional distribution of the ISM in the Milky Way Galaxy: II. The molecular gas disk. Publ Astron Soc Jpn 58:847–860, arXiv:astro-ph/0610769 ADSCrossRefGoogle Scholar
  100. Navarro JF, Frenk CS, White SDM (1996) The structure of cold dark matter halos. Astrophys J 462:563. https://doi.org/10.1086/177173, astro-ph/9508025 ADSCrossRefGoogle Scholar
  101. Nomoto K, Tominaga N, Umeda H, Kobayashi C, Maeda K (2006) Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution. Nucl Phys A 777:424–458. https://doi.org/10.1016/j.nuclphysa.2006.05.008, arXiv:astro-ph/0605725 ADSCrossRefGoogle Scholar
  102. Nordström B, Mayor M, Andersen J, Holmberg J, Pont F, Jørgensen BR, Olsen EH, Udry S, Mowlavi N (2004) The Geneva-Copenhagen survey of the solar neighbourhood. ages, metallicities, and kinematic properties of 14 000 f and g dwarfs. Astron Astrophys 418:989–1019, arXiv:astro-ph/0405198 ADSCrossRefGoogle Scholar
  103. Oey MS, Meurer GR, Yelda S, Furst EJ, Caballero-Nieves SM, Hanish DJ, Levesque EM, Thilker DA, Walth GL, Bland-Hawthorn J, Dopita MA, Ferguson HC, Heckman TM, Doyle MT, Drinkwater MJ, Freeman KC, Kennicutt RC Jr, Kilborn VA, Knezek PM, Koribalski B, Meyer M, Putman ME, Ryan-Weber EV, Smith RC, Staveley-Smith L, Webster RL, Werk J, Zwaan MA (2007) The survey for ionization in neutral gas Galaxies. III. Diffuse, warm ionized medium and escape of ionizing radiation. Astrophys J 661:801–814. https://doi.org/10.1086/517867, arXiv:astro-ph/0703033
  104. Olling RP, Merrifield MR (2001) Luminous and dark matter in the Milky Way. Mon Not R Astron Soc 326:164–180. https://doi.org/10.1046/j.1365-8711.2001.04581.x, arXiv:astro-ph/0104465 ADSCrossRefGoogle Scholar
  105. Pagel BEJ (1997) Nucleosynthesis and chemical evolution of Galaxies. Cambridge University Press, CambridgeGoogle Scholar
  106. Pejcha O, Prieto JL (2015) On the intrinsic diversity of type II-plateau supernovae. Astrophys J 806:225. https://doi.org/10.1088/0004-637X/806/2/225, 1501.06573 ADSCrossRefGoogle Scholar
  107. Pettini M (2004) Element abundances through the cosmic ages. In: Esteban C, García López R, Herrero A, Sánchez F (eds) Cosmochemistry. The melting pot of the elements, pp 257–298, astro-ph/0303272
  108. Pfalzner S (2009) Universality of young cluster sequences. Astron Astrophys 498:L37–L40. https://doi.org/10.1051/0004-6361/200912056, 0904.0523 ADSzbMATHCrossRefGoogle Scholar
  109. Pohl M, Englmaier P, Bissantz N (2008) Three-dimensional distribution of molecular gas in the barred Milky Way. Astrophys J 677:283–291. https://doi.org/10.1086/529004, arXiv:0712.4264 ADSCrossRefGoogle Scholar
  110. Prantzos N, Boissier S (2010) The SNIa/CCSN ratio as a function of metallicity. In: Progenitors and Environments of Stellar Explosions, p 77Google Scholar
  111. Prantzos N, Silk J (1998) Star formation and chemical evolution in the Milky Way: cosmological implications. Astrophys J 507:229–240. https://doi.org/10.1086/306327 ADSCrossRefGoogle Scholar
  112. Prantzos N, Boehm C, Bykov AM, Diehl R, Ferrière K, Guessoum N, Jean P, Knoedlseder J, Marcowith A, Moskalenko IV, Strong A, Weidenspointner G (2011) The 511 keV emission from positron annihilation in the Galaxy. Rev Mod Phys 83:1001–1056.  https://doi.org/10.1103/RevModPhys.83.1001, 1009.4620 ADSCrossRefGoogle Scholar
  113. Plüeschke S, Diehl R, Schöenfelder V, Bloemen H, Hermsen W, Bennett K, Winkler C, McConnell M, Ryan J, Oberlack U, Knöedlseder J (2001) In: Gimenez A, Reglero V, Winkler C (eds) Exploring the gamma-ray universe. ESA Special Publication, vol 459Google Scholar
  114. Rand RJ, Kulkarni SR (1989) The local Galactic magnetic field. Astrophys J 343:760–772. https://doi.org/10.1086/167747 ADSCrossRefGoogle Scholar
  115. Rand RJ, Lyne AG (1994) New rotation measures of distant pulsars in the inner galaxy and magnetic field reversals. Mon Not R Astron Soc 268:497ADSCrossRefGoogle Scholar
  116. Rattenbury NJ, Mao S, Sumi T, Smith MC (2007) Modelling the galactic bar using ogle-ii red clump giant stars. Mon Not R Astron Soc 378:1064–1078. arXiv:0704.1614 ADSCrossRefGoogle Scholar
  117. Robin AC, Reylé C, Derrière S, Picaud S (2003) A synthetic view on structure and evolution of the milky way. Astron Astrophys 409:523–540. arXiv:astro-ph/0401052 ADSCrossRefGoogle Scholar
  118. Rocha-Pinto HJ, Maciel WJ, Scalo J, Flynn C (2000) Chemical enrichment and star formation in the Milky Way disk. I. Sample description and chromospheric age-metallicity relation. Astron Astrophys 358:850–868. astro-ph/0001382
  119. Roškar R, Debattista VP, Quinn TR, Stinson GS, Wadsley J (2008) Riding the spiral waves: implications of stellar migration for the properties of galactic disks. Astrophys J 684:L79. https://doi.org/10.1086/592231, 0808.0206 ADSCrossRefGoogle Scholar
  120. Russeil D (2003) Star-forming complexes and the spiral structure of our Galaxy. Astron Astrophys 397:133–146. https://doi.org/10.1051/0004-6361:20021504 ADSCrossRefGoogle Scholar
  121. Russeil D (2010) The disk of our Galaxy. High Astron 15:786–786. https://doi.org/10.1017/S1743921310011646 Google Scholar
  122. Salpeter EE (1955) The luminosity function and stellar evolution. Astrophys J 121:161. https://doi.org/10.1086/145971 ADSCrossRefGoogle Scholar
  123. Sawada T, Hasegawa T, Handa T, Cohen RJ (2004) A molecular face-on view of the galactic centre region. Mon Not R Astron Soc 349:1167–1178. https://doi.org/10.1111/j.1365-2966.2004.07603.x, arXiv:astro-ph/0401286 ADSCrossRefGoogle Scholar
  124. Scalo JM (1986) The initial mass function of massive stars in galaxies empirical evidence. In: de Loore CWH, Willis AJ, Laskarides P (eds) Luminous stars and associations in Galaxies, IAU Symposium, vol 116, pp 451–466Google Scholar
  125. Schaller G, Schaerer D, Meynet G, Maeder (1992) A new grids of stellar models from 0.8 to 120 solar masses at Z = 0.020 and Z = 0.001. Astron Astrophys Suppl Ser 96:269–331Google Scholar
  126. Schmidt M (1959) The rate of star formation. Astrophys J 129:243. https://doi.org/10.1086/146614 ADSCrossRefGoogle Scholar
  127. Schmidt M (1963) The rate of star formation. II. The rate of formation of stars of different mass. Astrophys J 137:758. https://doi.org/10.1086/147553 ADSzbMATHCrossRefGoogle Scholar
  128. Schönrich R, Binney J (2009) Origin and structure of the Galactic disc(s). Mon Not R Astron Soc 399:1145–1156. https://doi.org/10.1111/j.1365-2966.2009.15365.x, 0907.1899 ADSCrossRefGoogle Scholar
  129. Sedlmayr E, Patzer ABC (2004) Grain formation and dynamical atmosphere. In: A Jorissen, S Goriely, M Rayet, L Siess, H Boffin (eds) EAS publications series, vol 11, pp 51–66.  https://doi.org/10.1051/eas:2004003 CrossRefGoogle Scholar
  130. Sellwood JA, Binney JJ (2002) Radial mixing in galactic discs. Mon Not R Astron Soc 336:785–796. https://doi.org/10.1046/j.1365-8711.2002.05806.x, astro-ph/0203510 ADSCrossRefGoogle Scholar
  131. Sofue Y, Honma M, Omodaka T (2008) Unified rotation curve of the galaxy—decomposition into de Vaucouleurs bulge, disk, dark halo, and the 9-kpc rotation dip –. ArXiv e-prints 0811.0859 Google Scholar
  132. Sommer-Larsen J, Dolgov A (2001) Formation of disk galaxies: warm dark matter and the angular momentum problem. Astrophys J 551:608–623. https://doi.org/10.1086/320211, astro-ph/9912166 ADSCrossRefGoogle Scholar
  133. Soubiran C, Girard P (2005) Abundance trends in kinematical groups of the Milky Way’s disk. Astron Astrophys 438:139–151. https://doi.org/10.1051/0004-6361:20042390, astro-ph/0503498 ADSCrossRefGoogle Scholar
  134. Spano M, Marcelin M, Amram P, Carignan C, Epinat B, Hernandez O (2008) Ghasp: an hα kinematic survey of spiral and irregular galaxies - v. Dark matter distribution in 36 nearby spiral galaxies. Mon Not R Astron Soc 383:297–316. 0710.1345 ADSCrossRefGoogle Scholar
  135. Springel V, White SDM, Frenk CS, Navarro JF, Jenkins A, Vogelsberger M, Wang J, Ludlow A, Helmi A (2008) Prospects for detecting supersymmetric dark matter in the galactic halo. Nature 456:73–76, 0809.0894 ADSGoogle Scholar
  136. Sukhbold T, Ertl T, Woosley SE, Brown JM, Janka HT (2016) Core-collapse Supernovae from 9 to 120 solar masses based on neutrino-powered explosions. Astrophys J 821:38. https://doi.org/10.3847/0004-637X/821/1/38, 1510.04643 ADSCrossRefGoogle Scholar
  137. Tammann GA, Loeffler W, Schroeder A (1994) The galactic supernova rate. Astrophys J Suppl 92:487–493ADSCrossRefGoogle Scholar
  138. Thorsett SE, Chakrabarty D (1999) Neutron star mass measurements. I. Radio pulsars. Astrophys J 512:288–299. https://doi.org/10.1086/306742, astro-ph/9803260 ADSCrossRefGoogle Scholar
  139. Tinsley BM (1980) Evolution of the stars and gas in Galaxies. Fundam Cosm Phys 5:287–388ADSGoogle Scholar
  140. Troland TH, Heiles C (1986) Interstellar magnetic field strengths and gas densities observational and theoretical perspectives. Astrophys J 301:339–345. https://doi.org/10.1086/163904 ADSCrossRefGoogle Scholar
  141. Truran JW, Cameron AGW (1971) Evolutionary models of nucleosynthesis in the Galaxy. Astrophys Space Sci 14:179–222. https://doi.org/10.1007/BF00649203 ADSCrossRefGoogle Scholar
  142. Vallée JP (2005) Pulsar-based galactic magnetic map: a large-scale clockwise magnetic field with an anticlockwise annulus. Astrophys J 619:297–305. https://doi.org/10.1086/426182 ADSCrossRefGoogle Scholar
  143. Vallée JP (2017) A guided map to the spiral arms in the galactic disk of the Milky Way. Astron Rev 13:113–146. https://doi.org/10.1080/21672857.2017.1379459, 1711.05228 ADSCrossRefGoogle Scholar
  144. Vázquez-Semadeni E (2015) Interstellar MHD turbulence and star formation. In: Lazarian A, de Gouveia Dal Pino EM, Melioli C (eds) Magnetic fields in diffuse media, astrophysics and space science library, vol 407, p 401. https://doi.org/10.1007/978-3-662-44625-6-14, 1208.4132
  145. Villalobos Á, Helmi A (2008) Simulations of minor mergers - I. General properties of thick discs. Mon Not R Astron Soc 391:1806–1827. https://doi.org/10.1111/j.1365-2966.2008.13979.x ADSCrossRefGoogle Scholar
  146. Voss R, Diehl R, Hartmann DH, Cerviño M, Vink JS, Meynet G, Limongi M, Chieffi A (2009) Using population synthesis of massive stars to study the interstellar medium near OB associations. Astron Astrophys 504:531–542. https://doi.org/10.1051/0004-6361/200912260, 0907.5209 ADSCrossRefGoogle Scholar
  147. Wang B (2018) Mass-accreting white dwarfs and type Ia supernovae. ArXiv e-prints 1801.04031 Google Scholar
  148. Weidemann V (2000) Revision of the initial-to-final mass relation. Astron Astrophys 363:647–656ADSGoogle Scholar
  149. Weidner C, Kroupa P, Bonnell IAD (2010) The relation between the most-massive star and its parental star cluster mass. Mon Not R Astron Soc 401:275–293. https://doi.org/10.1111/j.1365-2966.2009.15633.x, 0909.1555 ADSCrossRefGoogle Scholar
  150. Weidner C, Pflamm-Altenburg J, Kroupa P (2011) The Galaxy-wide IMF - from Star Clusters to Galaxies. In: Treyer M, Wyder T, Neill J, Seibert M, Lee J (eds) UP2010: have observations revealed a variable upper end of the initial mass function? Astronomical Society of the Pacific conference series, vol 440, p 19. 1011.1905
  151. Weidner C, Kroupa P, Pflamm-Altenburg J (2013) The mmax-Mecl relation, the IMF and IGIMF: probabilistically sampled functions. Mon Not R Astron Soc 434:84–101.  https://doi.org/10.1093/mnras/stt1002, 1306.1229 ADSCrossRefGoogle Scholar
  152. Woosley SE, Heger A (2007) Nucleosynthesis and remnants in massive stars of solar metallicity. Phys Rep 442:269–283. https://doi.org/10.1016/j.physrep.2007.02.009, arXiv:astro-ph/0702176 ADSCrossRefGoogle Scholar
  153. Woosley SE, Weaver TA (1995) The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys J Suppl 101:181. https://doi.org/10.1086/192237 ADSCrossRefGoogle Scholar
  154. Zinnecker H, Yorke HW (2007) Toward understanding massive star formation. Annu Rev Astron Astrophys 45:481–563.  https://doi.org/10.1146/annurev.astro.44.051905.092549, 0707.1279 ADSCrossRefGoogle Scholar
  155. Zoccali M, Renzini A, Ortolani S, Greggio L, Saviane I, Cassisi S, Rejkuba M, Barbuy B, Rich RM, Bica E (2003) Age and metallicity distribution of the galactic bulge from extensive optical and near-ir stellar photometry. Astron Astrophys 399:931–956. arXiv:astro-ph/0210660 ADSCrossRefGoogle Scholar
  156. Zuckerman B, Evans NJ II (1974) Models of massive molecular clouds. Astrophys J 192:L149–L152. https://doi.org/10.1086/181613 ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Max Planck Institut für extraterrestrische PhysikGarchingGermany
  2. 2.Institut d’AstrophysiqueParisFrance

Personalised recommendations