Instruments for Observations of Radioactivities

  • Gottfried Kanbach
  • Larry NittlerEmail author
Part of the Astrophysics and Space Science Library book series (ASSL, volume 453)


This chapter describes key tools used to observe cosmic radioactivity including astronomical methods, laboratory measurements of meteorites and detection of Galactic cosmic rays. Cosmic nucleosynthesis, that is, the creation of new elements including radioactive isotopes, occurs in the most energetic, often explosive, sites in the universe. To observe these targets and processes in the light of high-energy photons, which are emitted in nuclear transitions and particle interactions, sensors for photon energies from around 100 keV to more than 10 MeV have been developed and employed on satellites and balloon platforms, outside the Earth’s atmosphere, which is opaque to this radiation. The basic interactions for such photons are the photoelectric effect, Compton scattering, and pair creation. Typical examples for instrument designs are described in the first section of this chapter, followed by a presentation of successful missions since the 1980s (SMM, Compton Gamma-Ray Observatory CGRO), then currently operational missions (INTEGRAL, NuStar, Fermi), and perspectives for future telescopes with advances in technology. The second section addresses radioactivities in meteorite samples, which are generally measured by means of mass spectrometry. The most widely used methods are thermal ionisation (TIMS), multi-collector inductively-coupled-plasma (MC-ICPMS), secondary ion- (SIMS), and resonance ionisation mass spectrometry (RIMS). Parent and daughter nuclides can be measured on a variety of sample sizes, with precision depending on the size of the sample and concentrations of the elements of interest. The ultimate attainable precision is generally limited by the number of atoms in a given sample. New developments in RIMS, accelerator-based SIMS, and laser-assisted atom-probe tomography all hold promise for pushing meteoritic measurements to higher sensitivity and smaller spatial scales. Galactic cosmic rays are addressed in a third section. These are analysed by a variety of instruments from the ground, on high altitude balloons, or on spacecraft. Basic principles are discussed as well as specific experiments, including the Pierre Auger Observatory, the Cosmic Ray Isotope Spectrometer on the ACE spacecraft, TIGER, and PAMELA.


  1. Abbasi RU, Abu-Zayyad T, Amann JF et al (2004) Phys Rev Lett 92:151101ADSCrossRefGoogle Scholar
  2. Abbasi RU, Abu-Zayyad T, Allen M et al (2008) Phys Rev Lett 100:101101ADSCrossRefGoogle Scholar
  3. Accardo L, Aguilar M, Aisa D et al (2014) Phys Rev Lett 113:121101ADSCrossRefGoogle Scholar
  4. Adriani O, Barbarino GC, Bazilevskaya GA et al (2009) Nature 458:607ADSCrossRefGoogle Scholar
  5. Aguilar M, Alberti G, Alpat B et al (2013) Phys Rev Lett 110:141102ADSCrossRefGoogle Scholar
  6. Atwood WB, Abdo AA, Ackermann M et al (2009) Astrophys J 697:1071ADSCrossRefGoogle Scholar
  7. Ave M, Boyle PJ, Gahbauer F et al (2008) Astrophys J 678:262ADSCrossRefGoogle Scholar
  8. Barwick SW, Beatty JJ, Bhattacharyya A et al (1997) Astrophys J 482:L191ADSCrossRefGoogle Scholar
  9. Binns WR, Israel MH, Christian, ER et al (2016) Science 352:677ADSCrossRefGoogle Scholar
  10. Blanford GE, Friedlander MW, Klarmann J et al (1969) Phys Rev Lett 23:338ADSCrossRefGoogle Scholar
  11. Boggs S, Kurfess J, Ryan J et al (2006) Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) conference. Society of Photo-Optical Instrumentation Engineers (SPIE) conference series, vol 6266Google Scholar
  12. Brennecka GA, Weyer S, Wadhwa M et al (2010) Science 327:449ADSCrossRefGoogle Scholar
  13. Budde G, Burkhardt C, Brennecka GA et al (2016) Earth Planet Sci Lett 454:293ADSCrossRefGoogle Scholar
  14. De Angelis A, Tatischeff V, Tavani M et al (2017) Exp Astron 44:25ADSCrossRefGoogle Scholar
  15. Diehl R, Siegert T, Greiner J et al (2017) ArXiv e-prints, 1710.10139Google Scholar
  16. Fleisher RL, Price PB, Walker RM (1975) Nuclear tracks in solids: principles and applications. University of California Press, BerkeleyGoogle Scholar
  17. Forrest DJ, Chupp EL, Ryan JM et al (1980) Sol Phys 65:15ADSCrossRefGoogle Scholar
  18. George JS, Lave KA, Wiedenbeck ME et al (2009) Astrophys J 698:1666ADSCrossRefGoogle Scholar
  19. Gray CM (1974) Nature 251:495ADSCrossRefGoogle Scholar
  20. Greiner J, Iyudin A, Kanbach G et al (2009) Exp Astron 23:91ADSCrossRefGoogle Scholar
  21. Groopman EE, Grabowski KS, Fahey AJ, Koop L (2017) J Anal At Spectrom 32:2153CrossRefGoogle Scholar
  22. Harrison FA, Craig WW, Christensen FE et al (2013) Astrophys J 770:103ADSCrossRefGoogle Scholar
  23. Heck PR, Marhas KK, Hoppe P et al (2007) Astrophys J 656:1208ADSCrossRefGoogle Scholar
  24. Heck PR, Stadermann FJ, Isheim D et al (2014) Meteorit Planet Sci 49:453ADSCrossRefGoogle Scholar
  25. Kanbach G, Bertsch DL, Favale A et al (1989) Space Sci Rev 49:69ADSCrossRefGoogle Scholar
  26. Kanbach G, Andritschke R, Bloser PF et al (2003). In: Truemper JE, Tananbaum HD (eds) Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) conference. Society of Photo-Optical Instrumentation Engineers (SPIE) conference series, vol 4851, pp 1209–1220Google Scholar
  27. Kierans CA, Boggs SE, Chiu J-L et al (2017) ArXiv e-prints, 1701.05558Google Scholar
  28. Kita NT, Ushikubo T, Knight KB et al (2012) Geochim Cosmochim Acta 86:37ADSCrossRefGoogle Scholar
  29. Knie K, Korschinek G, Faestermann T et al (2004) Phys Rev Lett 93:171103ADSCrossRefGoogle Scholar
  30. Knödlseder J (2007) Adv Space Res 40:1263ADSCrossRefGoogle Scholar
  31. Kodolányi J, Stephan T, Trappitsch R et al (2018) Geochim Cosmochim Acta 221:127ADSCrossRefGoogle Scholar
  32. Lee D, Halliday AN (1995) Nature 378:771ADSCrossRefGoogle Scholar
  33. Lee T, Papanastassiou DA, Wasserburg GJ (1976) Geo Res Lett 3:41ADSCrossRefGoogle Scholar
  34. Liu N, Stephan T, Boehnke P et al (2017) Astrophys J 844:L12ADSCrossRefGoogle Scholar
  35. Liu M-C, McKeegan KD, Harrison TM, Jarzebinski G, Vltava L (2018) Int J Mass Spectrom 424:1CrossRefGoogle Scholar
  36. Longair MS (1992) High energy astrophysics (1992) Vol. 1: Particles, photons and their detection (High energy astrophysics, by MS Longair. Cambridge University Press, Cambridge, pp. 436. ISBN 0521387736Google Scholar
  37. Matzel JEP, Ishii HA, Joswiak D et al (2010) Science 328:483ADSCrossRefGoogle Scholar
  38. Matzel JEP, Ishii HA, Joswiak D, Brownlee D, Hutcheon ID (2014) Lunar and Planetary Institute Technical Report. Lunar and planetary science conference, vol 45, p 1645ADSGoogle Scholar
  39. McEnery JE (2017) AAS/High energy astrophysics division, vol. 16. AAS/High Energy Astrophysics Division, 103.13Google Scholar
  40. McKeegan KD, Kallio AP, Heber V et al (2009) Lunar and Planetary Institute Science conference abstracts. Lunar and Planetary Institute Science conference abstracts, vol 40, p 2494ADSGoogle Scholar
  41. Nagashima K, Krot AN, Yurimoto H (2004) Nature 428:921ADSCrossRefGoogle Scholar
  42. NCT Collaboration, Boggs S, Chang Y (2007) Adv Space Res 40:1281Google Scholar
  43. Nguyen AN, Zinner E (2004) Science 303:1496ADSCrossRefGoogle Scholar
  44. Nguyen AN, Nittler LR, Stadermann FJ, Stroud RM, Alexander CMO (2010) Astrophys J 719:166ADSCrossRefGoogle Scholar
  45. Nicolussi GK, Davis AM, Pellin MJ et al (1997) Science 277:1281ADSCrossRefGoogle Scholar
  46. Nittler LR, Alexander CMO’D, Gao X, Walker RM, Zinner EK (1994) Nature 370:443ADSCrossRefGoogle Scholar
  47. Nittler LR, Hoppe P, Stroud RM (2007) Lunar and planetary science conference 38, Abstract #2321Google Scholar
  48. Rauch BF, Link JT, Lodders K et al (2009) Astrophys J 697:2083ADSCrossRefGoogle Scholar
  49. Savina MR, Davis AM, Tripa CE et al (2004) Science 303:649ADSCrossRefGoogle Scholar
  50. Schönfelder V, Aarts H, Bennett K et al (1993) Astrophys J Suppl 86:657ADSCrossRefGoogle Scholar
  51. Stephan T, Trappitsch R, Davis AM et al (2016) Int J Mass Spectrom 407:1CrossRefGoogle Scholar
  52. Stephan T, Trappitsch R, Davis AM et al (2018) Geochim Cosmochim Acta 221:109ADSCrossRefGoogle Scholar
  53. Stone EC, Cohen CMS, Cook WR et al (1998) Space Sci Rev 86:285ADSCrossRefGoogle Scholar
  54. Takahashi T, Awaki A, Dotani T et al (2004). In: Hasinger G, Turner MJL (eds) Proceedings of SPIE. UV and gamma-ray space telescope systems, vol 5488, pp 549–560Google Scholar
  55. Takahashi T, Kelley R, Mitsuda K et al (2009). In: Kawai N, Mihara T, Kohama M, Suzuki M (eds) Astrophysics with all-sky X-ray observations, p 356Google Scholar
  56. Takeda M, Sakaki N, Honda K et al (2003) Astropart Phys 19:447ADSCrossRefGoogle Scholar
  57. The Pierre Auger Collaboration, Abraham J, Abreu P et al (2007) Science 318:938Google Scholar
  58. Trappitsch R, Stephan T, Savina MR et al (2018) Geochim Cosmochim Acta 221:87ADSCrossRefGoogle Scholar
  59. Vedrenne G, Roques J, Schönfelder V et al (2003) Astron Astrophys 411:L63ADSCrossRefGoogle Scholar
  60. Vestrand WT, Share GH, Murphy RJ et al (1999) Astrophys J Suppl 120:409ADSCrossRefGoogle Scholar
  61. Villeneuve J, Chaussidon M, Libourel G (2009) Science 325:985ADSCrossRefGoogle Scholar
  62. Weidenspointner G, Harris MJ, Sturner S, Teegarden BJ, Ferguson C (2005) Astrophys J Suppl 156:69ADSCrossRefGoogle Scholar
  63. Young ED, Simon JI, Galy A et al (2005) Science 308:223ADSCrossRefGoogle Scholar
  64. Zinner E, Nittler LR, Hoppe P et al (2005) Geochim Cosmochim Acta 69:4149ADSCrossRefGoogle Scholar
  65. Zych AD, O’Neill TJ, Bhattacharya D et al (2006) Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) conference. Society of Photo-Optical Instrumentation Engineers (SPIE) conference series, vol 6319Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Max Planck Institut für extraterrestrische PhysikGarchingGermany
  2. 2.Carnegie Institution for ScienceWashingtonUSA

Personalised recommendations