Advertisement

Nanosensors for Biomedical Applications: A Tutorial

  • Holly ClinganEmail author
  • Alex Laidlaw
  • Pilarisetty Tarakeshwar
  • Micah Wimmer
  • Antonio García
  • Vladimiro Mujica
Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

Nanoparticles coated with different kinds of molecules are currently designed and synthesized for several important applications, including catalysis, solar cells, and biomedical uses. A crucial molecular design variable is whether the nanoparticle exhibits plasmonic activity, e.g., the case of nanoparticles made of coinage metals, where no band gap is present, or if it rather behaves as a nano-semiconductor with a band gap, e.g., metal oxide nanoparticles. In this tutorial, we will discuss the literature for both plasmonic and non-plasmonic materials and our own recent theoretical and experimental work in two different showcases. First, we will present the example of using gold nanoparticles to monitor molecular sensing activity to follow changes in antibody/antigen binding through changes of the surface plasmon resonance (SPR) response. Second, we will discuss the case of surface-enhanced Raman resonance (SERS) in hybrid systems molecule-TiO2 nanoparticles and clusters, where the important physical quantity is the Raman signal to monitor the formation of chemical bonds and interfacial electron transfer processes.

References

  1. 1.
    Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782CrossRefGoogle Scholar
  2. 2.
    Spackova B et al (2016) Optical biosensors based on Plasmonic nanostructures: a review. Proc IEEE 104(12):2380–2408CrossRefGoogle Scholar
  3. 3.
    Lin HS, Carey JR (2014) The design and applications of nanoparticle coated microspheres in immunoassays. J Nanosci Nanotechnol 14(1):363–377CrossRefGoogle Scholar
  4. 4.
    Odom TW, Schatz GC (2011) Introduction to Plasmonics. Chem Rev 111(6):3667–3668CrossRefGoogle Scholar
  5. 5.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830CrossRefGoogle Scholar
  6. 6.
    Hao T, Riman RE (2006) Calculation of interparticle spacing in colloidal systems. J Colloid Interface Sci 297(1):374–377CrossRefGoogle Scholar
  7. 7.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346CrossRefGoogle Scholar
  8. 8.
    Kuznetsov AI et al (2016) Optically resonant dielectric nanostructures. Science 354:6314CrossRefGoogle Scholar
  9. 9.
    Nguyen VH, Nguyen BH (2015) Basics of quantum plasmonics. Adv Nat Sci Nanosci Nanotechnol 6(2):023001CrossRefGoogle Scholar
  10. 10.
    Haiss W et al (2007) Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal Chem 79(11):4215–4221CrossRefGoogle Scholar
  11. 11.
    Khlebtsov NG et al (2003) A multilayer model for gold nanoparticle bioconjugates: application to study of gelatin and human IgG adsorption using extinction and light scattering spectra and the dynamic light scattering method. Colloid J 65(5):622–635CrossRefGoogle Scholar
  12. 12.
    Dreaden EC et al (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779CrossRefGoogle Scholar
  13. 13.
    Brewer SH et al (2005) Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21(20):9303–9307CrossRefGoogle Scholar
  14. 14.
    Dominguez-Medina S et al (2012) In situ measurement of bovine serum albumin interaction with gold nanospheres. Langmuir 28(24):9131–9139CrossRefGoogle Scholar
  15. 15.
    Dewi MR, Laufersky G, Nann T (2014) A highly efficient ligand exchange reaction on gold nanoparticles: preserving their size, shape and colloidal stability. RSC Adv 4(64):34217–34220CrossRefGoogle Scholar
  16. 16.
    Ambrosi A et al (2007) Double-codified gold nanolabels for enhanced immunoanalysis. Anal Chem 79(14):5232–5240CrossRefGoogle Scholar
  17. 17.
    Cliffel DE, Turner BN, Huffman BJ (2009) Nanoparticle-based biologic mimetics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(1):47–59CrossRefGoogle Scholar
  18. 18.
    Pamies R et al (2014) Aggregation behaviour of gold nanoparticles in saline aqueous media. J Nanopart Res 16(4):2376CrossRefGoogle Scholar
  19. 19.
    Hohenester U, Trugler A (2012) MNPBEM: a Matlab toolbox for the simulation of plasmonic nanoparticles. Comput Phys Commun 183(2):370–381CrossRefGoogle Scholar
  20. 20.
    de la Rica R, Stevens MM (2012) Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol 7(12):821–824CrossRefGoogle Scholar
  21. 21.
    Mani V et al (2009) Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification. ACS Nano 3(3):585–594CrossRefGoogle Scholar
  22. 22.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830CrossRefGoogle Scholar
  23. 23.
    Parveen S, Misra R, Sahoo SK (2012) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed Nanotechnol Biol Med 8(2):147–166CrossRefGoogle Scholar
  24. 24.
    Tarakeshwar P, Finkelstein-Shapiro D, Rajh T, Mujica V (2010) Quantum confinement effects on the surface enhanced Raman spectra of. Int J Quantum Chem, to be published.Google Scholar
  25. 25.
    He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, Keating CD (September 2000) Colloidal Au-enhanced surface Plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc 122(38):9071–9077CrossRefGoogle Scholar
  26. 26.
    Katherine A Willets and Richard P Van Duyne (January 2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58 267–297Google Scholar
  27. 27.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (June 2008) Biosensing withplasmonicnanosensors. Nat Mater 7(6):442–453CrossRefGoogle Scholar
  28. 28.
    Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (February 2008) Nanostructured plasmonic sensors. Chem Rev 108(2):494–521CrossRefGoogle Scholar
  29. 29.
    Willner I, Willner B, Katz E (January 2007) Biomolecule-nanoparticle hybrid systems for bioelectronic applications. Bioelectrochem (Amsterdam, Netherlands) 70(1):2–11CrossRefGoogle Scholar
  30. 30.
    O’Regan B, Grätzel M (October 1991) A low-cost, high-efficiency solar cell based on dyesensitized colloidal TiO2 films. Nature 353(6346):737–740CrossRefGoogle Scholar
  31. 31.
    Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Grätzel M (July 1993) Conversion of light to electricity by cis-X2bis (2,2′-bipyridyl4,4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115(14):6382–6390CrossRefGoogle Scholar
  32. 32.
    Hagfeldt A, Graetzel M (June 1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95(1):49CrossRefGoogle Scholar
  33. 33.
    Hagfeldt A, Grätzel M (May 2000) Molecular photovoltaics. Acc Chem Res 33(5):269–277CrossRefGoogle Scholar
  34. 34.
    Schnadt J, Bruhwiler PA, Patthey L, O’Shea JN, Södergren, S, Odelius M, Ahuja R, Karis O, Bässler M, Persson P, Others (2002) Experimental evidence for sub-3-fs charge transfer from an aromatic adsorbate to a semiconductor. Nature 418(6898):620–623CrossRefGoogle Scholar
  35. 35.
    Grätzel M (February 2003) Solar cells to dye for. Nature 421:586–587CrossRefGoogle Scholar
  36. 36.
    Nie S (February 1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106CrossRefGoogle Scholar
  37. 37.
    Kneipp K, Wang Y, Kneipp H, Perelman L, Itzkan I, Dasari R, Feld M (March 1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670CrossRefGoogle Scholar
  38. 38.
    E C Le R, Meyer M, Etchegoin PG (February 2006) Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. J Phys Chem B 110(4):1944–1948CrossRefGoogle Scholar
  39. 39.
    Hongxing X, Bjerneld E, Käll M, Börjesson L (November 1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83(21):4357–4360CrossRefGoogle Scholar
  40. 40.
    Hutter E, Fendler JH (October 2004) Exploitation of localized surface plasmon resonance. Adv Mater 16(19):1685–1706CrossRefGoogle Scholar
  41. 41.
    Gratzel M (June 2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells*1. J Photochem Photobiol A Chem 164(1–3):3–14CrossRefGoogle Scholar
  42. 42.
    Law M, Greene LE, Johnson JC, Saykally R, Yang P (June 2005) Nanowire dye-sensitizedsolarcells. Nat Mater 4(6):455–459CrossRefGoogle Scholar
  43. 43.
    Wasielewski MR (May 1992) Photo induced electron transfer in supramolecular systems for artificial photosynthesis. Chem Rev 92(3):435–461CrossRefGoogle Scholar
  44. 44.
    Bard AJ, Fox MA (March 1995) Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res 28(3):141–145CrossRefGoogle Scholar
  45. 45.
    Kay A, Graetzel M (June 1993) Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J Phys Chem 97(23):6272–6277CrossRefGoogle Scholar
  46. 46.
    Kay A, Humphry-Baker R, Graetzel M (January 1994) Artificial photosynthesis. 2. Investigations on the mechanism of photosensitization of Nanocrystalline TiO2 solar cells by chlorophyll derivatives. J Phys Chem 98(3):952–959CrossRefGoogle Scholar
  47. 47.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (July 2001). Visible-light photocatalysis in nitrogen doped titanium oxides. Science (NewYork, NY) 293(5528):269–271.CrossRefGoogle Scholar
  48. 48.
    Zhang Z, Wang C-C, Zakaria R, Ying JY (December 1998) Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B 102(52):10871–10878CrossRefGoogle Scholar
  49. 49.
    Ramakrishna S, Willig F, May V (2001) Theory of ultrafast photo induced heterogeneous electron transfer: decay of vibrational coherence into a finite electronic vibrational quasicontinuum. J Chem Phys 115(6):2743CrossRefGoogle Scholar
  50. 50.
    Benkö G, Kallioinen J, Korppi-Tommola JEI, Yartsev AP, Sundström V (2002) Photo induced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states. J Am Chem Soc 124(3):489–493CrossRefGoogle Scholar
  51. 51.
    Stier W, Prezhdo OV (August 2002) Nonadiabatic molecular dynamics simulation of light induced electron transfer from an anchored molecular electron donor to a semiconductor acceptor. J Phys Chem B 106(33):8047–8054CrossRefGoogle Scholar
  52. 52.
    Duncan WR, Stier WM, Prezhdo OV (June 2005) Ab initio nonadiabatic molecular dynamics of the ultrafast electron injection across the alizarin-TiO2 interface. J Am Chem Soc 127(21):7941–7951CrossRefGoogle Scholar
  53. 53.
    Guo Z, Liang WZ, Yi Z, Chen GH (October 2008) Real-time propagation of the reduced one-electron density matrix in atom-centered orbitals: application to Electron injection dynamics in dye-sensitized TiO2 clusters. J Phys Chem C 112(42):16655–16662CrossRefGoogle Scholar
  54. 54.
    Le Ru EC, Etchegoin PG (2008) Principles of surface-enhanced Raman spectroscopy: and related Plasmonic effects. ElsevierScience Ltd, AmsterdamGoogle Scholar
  55. 55.
    Hongxing X, Wang X-H, Martin Persson HX, Käll M, Johansson P (December 2004) Unified treatment of fluorescence and Raman scattering processes near metal surfaces. Phys Rev Lett 93(24):1–4Google Scholar
  56. 56.
    Johansson P, Hongxing X, Käll M (July 2005) Surface-enhanced Raman scattering and fluorescence near metal nanoparticles. Phys Rev B 72(3):1–17CrossRefGoogle Scholar
  57. 57.
    Salam A, Micha DA (1999) Nonlinear optical response of metal surfaces with adsorbed molecules. Int J Quantum Chem 75(4–5):429–439CrossRefGoogle Scholar
  58. 58.
    Zhigang Yi DA (1999) Micha, and James Sund. Density matrix theory and calculations of nonlinear yields of CO photodesorbed from Cu (001) by light pulses. J Chem Phys 110(21):10562CrossRefGoogle Scholar
  59. 59.
    Micha DA, Santana A, Salam A (2002) Nonlinear optical response and yield in the femtosecond photodesorption of CO from the Cu (001) surface: a density matrix treatment. J Chem Phys 116(12):5173CrossRefGoogle Scholar
  60. 60.
    Leathers AS, Micha DA, Kilin DS (March 2010) Direct and indirect electron transfer at a semiconductor surface with an adsorbate: theory and application to Ag3Si (111):H. J Chem Phys 132(11):114–702CrossRefGoogle Scholar
  61. 61.
    Kilin DS, Micha DA (2010) Modeling the photovoltage of doped Si surfaces. J Phys Chem C, to appear, 115(3):797–858,CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Holly Clingan
    • 1
    Email author
  • Alex Laidlaw
    • 1
  • Pilarisetty Tarakeshwar
    • 1
  • Micah Wimmer
    • 1
  • Antonio García
    • 2
  • Vladimiro Mujica
    • 1
  1. 1.School of Molecular SciencesArizona State UniversityTempeUSA
  2. 2.Ira A. Fulton School of EngineeringArizona State UniversityTempeUSA

Personalised recommendations