Advertisement

Wear of Composites

  • Antonio Contreras Cuevas
  • Egberto Bedolla Becerril
  • Melchor Salazar Martínez
  • José Lemus Ruiz
Chapter

Abstract

This chapter includes an extensive review of the fundamental science aspects of tribology, focusing mainly on wear and friction of metal matrix composites (MMCs), specifically those made from light alloys and reinforcements of ceramic materials. In addition, this chapter deals with some fundamental aspects in the study of the wear of materials taking into account the different factors on wear rate of MMC, such as normal applied load, sliding speed, quantity, size, and shape of reinforcements used in the manufacture of the composites. Finally, some research work done by this working group studied the wear behavior of AZ91E/TiC and AZ91E/AlN composites. For AZ91E/TiC composites it was found that the higher normal load applied the higher weight loss. It is presumed that higher load causes fractures and debonding of reinforcing particles increasing wear. For AZ91E/AlN composites fabricated by the stir casting process adding 10, 15, and 20 vol.% AlNp, the wear behavior was evaluated. Additionally, some effects of heat treatments applied to MMC on the wear resistance were evaluated.

References

  1. 1.
    Jost HP (1976) Economic impact of tribology. In: Proceeding of the 20th Meeting of the Mechanical Failures Prevention GroupGoogle Scholar
  2. 2.
    Pinkus O, Wilcock DF (1997) Strategy for energy conservation through tribology. In: Tribology in Energy Technology Workshop American Society of Mechanical EngineersGoogle Scholar
  3. 3.
    Holmberg K, Anderson P, Erdemir A (2012) Global energy consumption due to friction in passenger cars. Tribol Int 47:221–234CrossRefGoogle Scholar
  4. 4.
    Rabinowicz E (1995) Friction and wear of materials. Wiley, New YorkGoogle Scholar
  5. 5.
    Archard J (1953) Contact and rubbing of flat surfaces. J Appl Phys 24(8):981–988CrossRefGoogle Scholar
  6. 6.
    Hutchings IM (1992) Tribology: friction and wear of engineering materials. BH, p 112Google Scholar
  7. 7.
    Glossary of Terms (1992) ASM handbook, friction, lubrication and wear technology. ASM Int 18:21Google Scholar
  8. 8.
    Brushan B (2013) Introduction to tribology, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  9. 9.
    Kok M, Ozdin K (2007) Wear resistance of aluminum alloy and its composites reinforced by Al2O3. J Mater Process Technol 183:301–309CrossRefGoogle Scholar
  10. 10.
    Manoj B, Basu B, Murthy V et al (2005) The role of tribochemistry on fretting wear of Mg-SiC particulate. Compos Part A 36:13–23CrossRefGoogle Scholar
  11. 11.
    Suh N (1973) The delamination theory of wear. Wear 25:111CrossRefGoogle Scholar
  12. 12.
    Ramakoteswara V, Ramanaiah M, Sarcar M (2016) Dry sliding wear behavior of TiC-AA7075 metal matrix composites. Int J Appl Sci Eng 14(1):27–37Google Scholar
  13. 13.
    Lim C, Lim S, Gupta M (2003) Wear behaviour of SiCp-reinforced magnesium matrix composites. Wear 255:629–637CrossRefGoogle Scholar
  14. 14.
    Nguyen Q, Sim Y, Gupta M, Lim C (2014) Tribology characteristics of magnesium alloy AZ31B and its composites. Tribol Int Part B 82:464–471CrossRefGoogle Scholar
  15. 15.
    Asif M, Chandra K, Misra P (2011) Development of aluminum hybrid metal matrix composites for heavy duty applications. J Miner Mater Charact Eng 10(14):1337–1344Google Scholar
  16. 16.
    Selvam B, Marimuthu P, Narayanasamy R et al (2014) Dry sliding wear behavior of zinc oxide reinforced magnesium matrix nano-composites. Mater Des 58:475–481CrossRefGoogle Scholar
  17. 17.
    Falcón L, Bedolla E, Lemus J (2011) Wear performance of TiC as reinforcement of a magnesium alloy matrix composite. Compos Part B 42:275–279CrossRefGoogle Scholar
  18. 18.
    Arreola C (2016) Evaluación de propiedades mecánicas y comportamiento al desgaste de compuestos AZ91E/AlN fabricados por fundición con agitación. Master Thesis, Instituto Investigación Metalurgia Materiales, UMSNH, MéxicoGoogle Scholar
  19. 19.
    Sharma S, Andand B, Krishna M (2000) Evaluation of sliding wear behavior of feldspar particle-reinforced magnesium alloy composites. Wear 241:33–40CrossRefGoogle Scholar
  20. 20.
    Saravanan R, Surappa M (2000) Fabrication and characterization of pure magnesium-30 vol. % SiCp particle composite. Mater Sci Eng A276:108–116CrossRefGoogle Scholar
  21. 21.
    Narayanasamy P, Selvakumar N, Balasundar P (2015) Effect of hybridizing MoS2 on the tribological behaviour of Mg–TiC composites. Trans Indian Inst Met 68:911–925CrossRefGoogle Scholar
  22. 22.
    Prakash K, Balasundar P, Nagaraja S et al (2016) Mechanical and wear behaviour of Mg-SiC-Gr hybrid composites. J Magnes Alloys 4:197–206CrossRefGoogle Scholar
  23. 23.
    Xiu K, Wang HY, Sui HL et al (2006) The sliding wear behavior of TiC/AZ91 magnesium matrix composites. J Mater 41:7052–7058CrossRefGoogle Scholar
  24. 24.
    Alpas A, Zhang J (1992) Effect of SiC particulate reinforcement on the dry sliding wear of aluminium-silicon alloys (A356). Wear 155:83–104CrossRefGoogle Scholar
  25. 25.
    Alahelisten A, Bergman F, Olsson M, Hogmark S (1993) On the wear of aluminium and magnesium metal matrix composites. Wear 165:221–226CrossRefGoogle Scholar
  26. 26.
    Basavarajappa S, Chandramohan G, Mahadevan A (2007) Influence of speed on the dry sliding wear behavior and subsurface deformation on hybrid metal matrix composite. Wear 262:1007–1012CrossRefGoogle Scholar
  27. 27.
    Rajaneesh N, Sadashivappa K (2011) Dry sliding wear behavior of SiC particles reinforced zinc-aluminium (ZA43) alloy metal matrix composites. J Miner Mater Charact Eng 10(5):419–425Google Scholar
  28. 28.
    Shanthi M, Lim C, Lu L (2007) Effects of grain size on the wear of recycled AZ91 Mg. Tribol Int 40:335–338CrossRefGoogle Scholar
  29. 29.
    Lim C, Leo D, Gupta M (2005) Wear of magnesium composites reinforced with nano-sized alumina particulates. Wear 259:620–625CrossRefGoogle Scholar
  30. 30.
    Gopalakrishnan S, Murugan N (2012) Production and wear characterization of AA 6061 matrix titanium carbide particle reinforced composite by enhanced stir casting method. Compos B 43:302–308CrossRefGoogle Scholar
  31. 31.
    Lakshmipathy J, Kulendran B (2014) Reciprocating wear behaviour of 7075Al/SiC and 6061/Al2O3 composites: a study of effect of reinforcement, stroke and load. Tribol Ind 36(2):117–126Google Scholar
  32. 32.
    Ramírez REJ (2015) Thesis: Efecto del tratamiento térmico T6 sobre las propiedades tribológicas del compuesto Al-2024/TiC, Tesis Universidad Autónoma de CoahuilaGoogle Scholar
  33. 33.
    Miyajima T, Iwai Y (2003) Effects of reinforcements on sliding wear behaviour of aluminium matrix composites. Wear 255:606–616CrossRefGoogle Scholar
  34. 34.
    Zou X, Miyahara H, Yamamoto K et al (2003) Sliding wear behaviour of Al-Si-Cu composites reinforced with SiC particles. Mater Sci Technol 19(11):1519–1526CrossRefGoogle Scholar
  35. 35.
    Maleque M, Radhi M, Rahman M (2016) Wear study of Mg-SiCp reinforcement aluminium metal matrix composite. J Mech Eng Sci 10:1758–1764CrossRefGoogle Scholar
  36. 36.
    Chelliah N, Singh H, Surappa M (2016) Correlation between microstructure and wear behavior of AZX915 Mg-alloy reinforced with 12 wt% TiC particles by stir-casting process. J Magnes Alloy 4:306–313CrossRefGoogle Scholar
  37. 37.
    Kaczmar J, Naplocha K (2010) Wear behavior of composite materials based on 2024 Al-alloy reinforced with δ-alumina fibers. J Achiev Mater Manuf Eng 43:8–93Google Scholar
  38. 38.
    Shivaprakash Y, Basavaraj Y, Sreenivasa K (2013) Comparative study of tribological characteristics of AA2024+10% fly ash composite in non-heat treated and heat treated conditions. Int J Res Eng Technol 2:175–280Google Scholar
  39. 39.
    Sameezadeh M, Emamy M, Farhangi H (2011) Effects of particulate reinforcement and heat treatment on the hardness and wear properties of AA 2024-MoSi2 nanocomposites. Mater Des 32:2157–2164CrossRefGoogle Scholar
  40. 40.
    Yamanoglu R, Karakulak E, Zeren A et al (2013) Effect of heat treatment on the tribological properties of Al-Cu-Mg/nano SiC composites. Mater Des 49:820–825CrossRefGoogle Scholar
  41. 41.
    Suresh K, Niranjan B, Jebaraj M et al (2003) Tensile and wear properties of aluminium composites. Wear 255:638–642CrossRefGoogle Scholar
  42. 42.
    Lim SC, Gupta M, Ren L (1999) The tribological properties of Al-Cu/SiCp metal matrix composites fabricated using the rheocasting technique. J Mater Process Technol 89–90:591–596CrossRefGoogle Scholar
  43. 43.
    Sahin Y (2003) Wear behavior of aluminum alloy and its composites reinforced by SiC particles using statistical analysis. Mater Des 24:95–103CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Antonio Contreras Cuevas
    • 1
  • Egberto Bedolla Becerril
    • 2
  • Melchor Salazar Martínez
    • 3
  • José Lemus Ruiz
    • 2
  1. 1.Instituto Mexicano del PetróleoCiudad de MéxicoMéxico
  2. 2.Universidad Michoacana de San Nicolás de HidalgoInstituto de Investigación en Metalurgia y MaterialesMoreliaMéxico
  3. 3.Clúster Politécnico Veracruz - IPNPapantla de OlarteMéxico

Personalised recommendations