Joining of Composites

  • Antonio Contreras Cuevas
  • Egberto Bedolla Becerril
  • Melchor Salazar Martínez
  • José Lemus Ruiz


In this chapter, the underlying science of joining metal matrix composites (MMC) is described. Some specific examples of production of joining MMC produced by the authors are given to illustrate the key factors involved. A wide range of joining MMC is now available commercially. The properties of the MMC/metal ensembles can be related directly to the joining technique as well as the parameter and its effect in thermodynamics and mechanism involved, which must be controlled during joining processes. The choice of the best joint technique is related to the joining materials, final required properties, and the intended applications. The properties of the MMC/metal combinations depend on the joining interface of reaction zone produced during joining, which, in turn, depends on a joining route and subsequent thermal treatment. Some characteristics of diverse joining methods, as well a mechanic evaluations techniques to MMC joints, are analyzed. The effect of a reaction layer on the interface formed during joining of composites was studied. Additionally, some fundamental aspects and conditions to prepare ceramic-metal joints are analyzed.


  1. 1.
    Fernandez P, Martínez V, Valencia M et al (2006) Applications of metal matrix composites in electric and electronic industries. Dyna Rev Fac Nac Minas 73(149):1–8Google Scholar
  2. 2.
    Gay D (2015) Composite materials: design and applications, 3rd edn. CRC Press/Taylor & Francis, Boca RatonGoogle Scholar
  3. 3.
    Miracle DB (2005) Metal matrix composites – from science to technological significance. Compos Sci Technol 65:2526–2540CrossRefGoogle Scholar
  4. 4.
    Rajeshwar K, De Tacconi NR, Chenthamarakshan CR (2001) Semiconductor – based composite materials: preparation, properties and performance. Chem Mater 9(13):2765–2782CrossRefGoogle Scholar
  5. 5.
    Rawal S (2001) Metal matrix composites for space applications. JOM 53(4):14–17CrossRefGoogle Scholar
  6. 6.
    Kainer KU (2006) Chapter 1. Basics of metal matrix composites. In: Metal matrix composites: custom-made materials for automotive and aerospace engineering. Wiley, Weinheim, pp 2–55CrossRefGoogle Scholar
  7. 7.
    Kudela S (2003) Magnesium-lithium matrix composites-an overview. Int J Mater Prod Technol 18(1–3):91–115CrossRefGoogle Scholar
  8. 8.
    Kainer KU (2006) Metal matrix composites: custom-made materials for automotive and aerospace engineering. Wiley, Weinheim, pp 1–54Google Scholar
  9. 9.
    Prater T (2011) Solid-state joining of metal matrix composites: a survey of challenges and potential solutions. Mater Manuf Proc 26(4):1–23CrossRefGoogle Scholar
  10. 10.
    Zhang XP, Quan GF, Wei W (1999) Preliminary investigation on joining performance of SiCp-reinforced aluminium metal matrix composite (Al/SiCp–MMC) by vacuum brazing. Compos Part A 30:823–827CrossRefGoogle Scholar
  11. 11.
    Lemus-Ruiz J, Ceja-Cárdenas L, Bedolla-Becerril E et al (2011) Chapter 10. Production, characterization, and mechanical evaluation of dissimilar metal/ceramic joints. In: Cuppoletti J (ed) Nanocomposites with unique properties and applications in medicine and industry. InTech, Rijeka, pp 205–224Google Scholar
  12. 12.
    Santella ML (1992) A review of techniques for joining advanced ceramics. Ceram Bull 71(6):947–954Google Scholar
  13. 13.
    Loehman RE, Tomsia AP (1988) Joining of ceramics. Ceram Bull 67(2):375–380Google Scholar
  14. 14.
    Nicholas MG (1989) Joining structural ceramics. In: Peteves SD (ed) Designing interfaces for technological applications. Elsevier, Amsterdam, pp 49–76Google Scholar
  15. 15.
    Okamoto T (1990) Interfacial structure of metal-ceramic joints. ISIJ Int 30(12):1033–1034CrossRefGoogle Scholar
  16. 16.
    Thomas WM, Threadgill PL, Nicholas ED (1999) Feasibility of friction stir welding steel. Sci Technol Weld Join 4(6):365–372CrossRefGoogle Scholar
  17. 17.
    Sathiya P, Aravindan S, Noorul Haq A (2007) Effect of friction welding parameters on mechanical and metallurgical properties of ferritic stainless steel. Int J Adv Manuf Technol 31:1076–1082CrossRefGoogle Scholar
  18. 18.
    Maalekian M (2007) A friction welding – critical assessment of literature. Sci Technol Weld Join 12(8):738–759CrossRefGoogle Scholar
  19. 19.
    Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng Rep 50:1–78CrossRefGoogle Scholar
  20. 20.
    Thomas WM, Nicholas ED (1997) Friction stir welding for the transportation industries. Mater Des 18(4/6):269–273CrossRefGoogle Scholar
  21. 21.
    Prater T (2014) Friction stir welding of metal matrix composites for use in aerospace structures. Acta Astronaut 93:366–373CrossRefGoogle Scholar
  22. 22.
    Meshram SD, Mohandas T, Madhusudhan G (2007) Friction welding of dissimilar pure metals. J Mater Proc Technol 184:330–337CrossRefGoogle Scholar
  23. 23.
    Uday MB, Ahmad-Fauzi MN, Mohd Noor A et al (2016) Chapter 8. Current issues and problems in the joining of ceramic to metal. In: Joining technologies. InTech, Rijeka, pp 159–193Google Scholar
  24. 24.
    Hupston G, Jacobson DM (2004) Principles of soldering. ASM International, OhioGoogle Scholar
  25. 25.
    Koshiishi F (2016) Welding duplex stainless steel. Kobelco Weld Today 19:1–10Google Scholar
  26. 26.
    Srivastava AK, Sharma A (2017) Advances in joining and welding technologies for automotive and electronic applications. Am J Mater Eng Technol 5(1):7–13CrossRefGoogle Scholar
  27. 27.
    Raghavendra DR, Sethuram D, Raghupathy VP (2015) Comparison of friction welding technologies. Int J Innov Sci Eng Technol 2(12):492–499Google Scholar
  28. 28.
    Urena A, Escalera MD, Gil L (2000) Influence of interface reactions on fracture mechanisms in TIG arc-welded aluminium matrix composites. Compos Sci Technol 60:613–622CrossRefGoogle Scholar
  29. 29.
    Lienert TJ, Brandon ED, Lipolds JC (1993) Laser and electron beam welding of SiCp/A-356 MMC. Scr Metall Mater 28:1341–1346CrossRefGoogle Scholar
  30. 30.
    Garcia R, Lopez VH, Bedolla E et al (2002) MIG welding process with indirect electric arc. J Mater Sci Lett 21(24):1965–1967CrossRefGoogle Scholar
  31. 31.
    Garcıia R, Lopez VH, Bedolla E (2003) A comparative study of the MIG welding of AI/TiC composites using direct and indirect electric arc processes. J Mater Sci 38:2771–2779CrossRefGoogle Scholar
  32. 32.
    Garcıia R, Lopez VH, Bedolla B (2007) Welding of aluminium by the MIG process with indirect electric arc (MIG-IEA). J Mater Sci 42:7956–7963CrossRefGoogle Scholar
  33. 33.
    Suganuma K, Okamoto T, Koizumi M et al (1985) Method for preventing thermal expansion mismatch effect in ceramic-metal joining. J Mater Sci Lett 4:648–650CrossRefGoogle Scholar
  34. 34.
    Dunford DV, Wisbey A (1993) Diffusion bonding of advanced aerospace metallics. Mater Res Soc Symp Proc 314:39–50CrossRefGoogle Scholar
  35. 35.
    Peteves SD, Nicholas MG (1991) Materials factors affecting joining of silicon nitride ceramics. In: Kumar P, Greenhut VA (eds) Metal-ceramic joining. The Minerals, Metals & Materials Society, Warrendale, pp 43–65Google Scholar
  36. 36.
    Barnes TA, Pashby IR (2000) Joining techniques for aluminium space frames used in automobiles part I-D solid and liquid phase welding. J Mater Proc Technol 99:62–71CrossRefGoogle Scholar
  37. 37.
    Surappa MK (2003) Aluminium matrix composites: challenges and opportunities. Sadhana 28(1–3):319–334CrossRefGoogle Scholar
  38. 38.
    Nami H, Halvaee A, Adgi H et al (2010) Investigation on microstructure and mechanical properties of diffusion bonded Al/Mg2Si metal matrix composite using copper interlayer. J Mater Proc Technol 210:1282–1289CrossRefGoogle Scholar
  39. 39.
    Shirzadi AA, Assadi H, Wallach ER (2001) Interface evolution and bond strength when diffusion bonding materials with stable oxide films. Surf Interface Anal 31:609–618CrossRefGoogle Scholar
  40. 40.
    Bedolla E, Lemus-Ruiz J, Contreras A (2012) Synthesis and characterization of Mg-AZ91/AlN composites. Mater Des 38:91–98CrossRefGoogle Scholar
  41. 41.
    Ortega-Silva E (2016) Producción y caracterización de ensambles híbridos de un material compuesto AlN/MgAZ91E. Dissertation of Master Thesis, Instituto de Investigación en Metalurgia y Materiales, UMSNH, Morelia, MéxicoGoogle Scholar
  42. 42.
    Yong Z, Di F, Zhi-Yomg H et al (2006) Progress in joining ceramics to metals. J Iron Steel Res Int 13(2):1–5CrossRefGoogle Scholar
  43. 43.
    Martinelli AE, Hadian AM, Drew RAL (1997) A review on joining non-oxide ceramics to metals. J Can Ceram Soc 66(4):276–284Google Scholar
  44. 44.
    Yokokawa H, Sakai N, Kawada T (1991) Chemical potential diagram of Al-Ti-C system: Al4C3 formation on TiC formed in Al-Ti liquids containing carbon. Metall Mater Trans A 22:3075–3076CrossRefGoogle Scholar
  45. 45.
    Schwartz MM (1990) Ceramic joining. ASM International, Ohio, pp 99–103Google Scholar
  46. 46.
    Nicholas MG (1998) Joining processes, introduction to brazing and diffusion bonding. Springer, New York, pp 22–24Google Scholar
  47. 47.
    Contreras A, Lopez VH, Leon CA et al (2001) The relation between wetting and infiltration behavior in the Al-1010/TiC and Al-2024/TiC systems. Adv Technol Mater Mater Process J 3:27–34Google Scholar
  48. 48.
    Do Nacimento RM, Martinelli AE, Buschinelli AJA et al (2005) Microstructure of brazed joints between mechanically metallized Si3N4 and stainless steel. J Mater Sci 40(17):4549–4556CrossRefGoogle Scholar
  49. 49.
    Paulasto M, Kivilahti JK (1995) Formation of interfacial microstructure in brazing of Si3N4 with Ti-activated Ag-Cu filler alloys. Scr Metall Mater 32(8):1209–1214CrossRefGoogle Scholar
  50. 50.
    Ceja-Cárdenas L, Lemus-Ruiz J, De la Torre SD et al (2013) Interfacial behavior in the brazing of silicon nitride joint using an Nb-foil interlayer. J Mater Process Technol 213(3):411–417CrossRefGoogle Scholar
  51. 51.
    Huang JH, Dong YL, Wan Y et al (2008) Reactive diffusion bonding of SiCp/Al composites by insert layers of mixed powders. Mater Sci Technol 21(10):1217–1221CrossRefGoogle Scholar
  52. 52.
    Huang JH, Dong YL, Wan Y et al (2007) Investigation on reactive diffusion bonding of SiCp/6063 MMC by using mixed powders as interlayers. J Mater Process Technol 190:312–316CrossRefGoogle Scholar
  53. 53.
    Nami H, Halvaee A, Adgi H (2011) Transient liquid phase diffusion bonding of Al/Mg2Si metal matrix composite. Mater Des 32:3957–3965CrossRefGoogle Scholar
  54. 54.
    Sugar JD, McKown JT, Akashi T et al (2006) Transient-liquid-phase and liquid-film-assisted joining of ceramics. J Eur Ceram Soc 26:363–372CrossRefGoogle Scholar
  55. 55.
    Derby B, Wallach ER (1982) Theoretical model for diffusion bonding. Metal Sci 16(1):49–56CrossRefGoogle Scholar
  56. 56.
    Locatelli MR, Dalgleish BJ, Nakashima K et al (1997) New approaches to joining ceramics for high-temperature applications. Ceram Int 23:313–322CrossRefGoogle Scholar
  57. 57.
    Chen IW, Argon AS (1981) Diffusive growth of grain-boundary cavities. Acta Metall 29:1759–1768CrossRefGoogle Scholar
  58. 58.
    Almond EA, Cottenden AM, Gee MG (1983) Metallurgy of interfaces in hard-metal/metal diffusion bonds. Metals Sci 17:153–158CrossRefGoogle Scholar
  59. 59.
    Lemus-Ruiz J (2000) Diffusion bonding of silicon nitride to titanium. PhD Thesis, McGill University, CanadaCrossRefGoogle Scholar
  60. 60.
    Shirzadi AA, Wallach ER (2004) New method to diffusion bond supralloys. Sci Technol Weld Join 9(1):37–40CrossRefGoogle Scholar
  61. 61.
    Suganuma K (1993) Reliability factors in ceramic/metal joining. Mater Res Soc Symp Proc 314:51–60CrossRefGoogle Scholar
  62. 62.
    Anderson RM (1989) Testing advanced ceramics. Adv Mater Proc 3:31–36Google Scholar
  63. 63.
    Brandon D, Kaplan WD (1997) Joining processes – an introduction. Wiley, New YorkGoogle Scholar
  64. 64.
    Suganuma K, Okamoto T, Koizumi M (1984) Effect of interlayers in ceramic-metal joints with thermal expansion mismatches. J Am Ceram Soc 67:256–257CrossRefGoogle Scholar
  65. 65.
    Mizuhara H, Huebel E, Oyama T (1989) High-reliability joining of ceramic to metal. Ceram Bull 68(9):1591–1599Google Scholar
  66. 66.
    Mülheim MT (1994) Bending test for active brazed metal/ceramic joints–a round Robin. Ceram Forum Int 71(7):406–411Google Scholar
  67. 67.
    Lee WC (1997) Strength of Si3N4/Ni-Cr-Fe alloy joints with test methods: shear, tension, three-point and four-point bending. J Mater Sci 32:6657–6660CrossRefGoogle Scholar
  68. 68.
    Quinn GD, Morrell R (1991) Design data for engineering ceramics: a review of the flexure test. J Am Ceram Soc 74(9):2037–2066CrossRefGoogle Scholar
  69. 69.
    Cam G, Bohm K-H, Mullauer J et al (1996) The fracture behavior of diffusion bonding duplex gamma TiAl. JOM 48:66–68CrossRefGoogle Scholar
  70. 70.
    Quinn GD (1991) Strength and proof testing. Engineered materials handbook 4, ASM International, Ohio, pp. 585–598Google Scholar
  71. 71.
    Emsley J (1991) The key to the elements. Clarendom Press, OxfordGoogle Scholar
  72. 72.
    Richerson DW (1992) Modern ceramic engineering, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  73. 73.
    Lemus-Ruiz J, Aguilar-Reyes EA (2004) Mechanical properties of silicon nitride joints using a Ti-foil interlayer. Mater Lett 58(19):2340–2344CrossRefGoogle Scholar
  74. 74.
    Lemus-Ruiz J, Ceja-Cárdenas L, Salas-Villaseñor AL et al (2009) Mechanical evaluation of tungsten carbide/nickel joints produced by direct diffusion bonding and using a Cu-Zn alloy. In: International brazing and soldering conference. American Welding Society, Miami, pp 206–212Google Scholar
  75. 75.
    Castro-Sánchez G, Otero-Vázquez CI, Lemus-Ruiz J (2017) Fabrication and evaluation of hybrid components of WC/Inconel 600 by liquid state diffusion bonding. J Mater Sci Eng Adv Technol 16(1):1–16Google Scholar
  76. 76.
    Zhang J, Fang HY, Zhou Y et al (2003) Effect of bonding condition on microstructure and properties of the Si3N4/Si3N4 joint brazed using Cu-Zn-Ti filler alloy. Key Eng Mater 249:255–260CrossRefGoogle Scholar
  77. 77.
    Lemus-Ruiz J, Verduzco JA, González-Sánchez J et al (2015) Characterization, shear strength and corrosion resistance of self-joining AISI 304 using a Ni-Fe-Cr-Si metallic glass foil. J Mater Process Technol 223:16–21CrossRefGoogle Scholar
  78. 78.
    Kenevisi MS, Khoie SMM (2012) A study on the effect of bonding time on the properties of Al7075 to Ti–6Al–4V diffusion bonded joint. Mater Lett 76:144–146CrossRefGoogle Scholar
  79. 79.
    Samavatian M, Halvaee A, Amadeh AA et al (2015) Transient liquid phase bonding of Al 2024 to Ti−6Al−4V alloy using Cu−Zn interlayer. Trans Nonferrous Met Soc China 25:770–775CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Antonio Contreras Cuevas
    • 1
  • Egberto Bedolla Becerril
    • 2
  • Melchor Salazar Martínez
    • 3
  • José Lemus Ruiz
    • 2
  1. 1.Instituto Mexicano del PetróleoCiudad de MéxicoMéxico
  2. 2.Universidad Michoacana de San Nicolás de HidalgoInstituto de Investigación en Metalurgia y MaterialesMoreliaMéxico
  3. 3.Clúster Politécnico Veracruz - IPNPapantla de OlarteMéxico

Personalised recommendations