Fabrication Processes for Metal Matrix Composites

  • Antonio Contreras Cuevas
  • Egberto Bedolla Becerril
  • Melchor Salazar Martínez
  • José Lemus Ruiz


This chapter includes an extensive review of the different methods used for the manufacture of composites. In addition, this chapter describes the main fundamental aspects considered during the fabrication of composites which are related to the process used, such as wettability and interfacial reactions between matrix and reinforcement. Main factors involve for each fabrication process were analyzed. Classification of fabrication process according to the temperature of the metal matrix during the processing includes liquid-state processes, solid-state processes, and gas- or vapor-phase processes. Greater emphasis is placed in the first classification, focusing on the infiltration process. Key parameters in infiltration processes such as wettability, temperature, chemical composition of the molten metal, percentage of reinforcement, and pore size, among others, are analyzed. The infiltration processes can be squeeze casting or pressure casting, gas pressure infiltration, or pressureless infiltration. Solid-state processes include powder metallurgy and consolidation, mechanical alloying, diffusion or roll bonding, and high-rate consolidation. Gas- or vapor-phase processes include mainly two processes, spray deposition and vapor-phase deposition.


  1. 1.
    Suresh S, Mortensen A, Needleman A (eds) (1993) Fundamental of metal matrix composites. Butterworth-Heinemann, BostonGoogle Scholar
  2. 2.
    Contreras A, Salazar M, León CA et al (2000) Kinetic study of the infiltration of aluminum alloys into TiC preforms. Mater Manuf Process 15(2):163–182CrossRefGoogle Scholar
  3. 3.
    Contreras A, López VH, Bedolla E (2004) Mg/TiC composites manufactured by pressureless melt infiltration. Scr Mater 51(3):249–253CrossRefGoogle Scholar
  4. 4.
    León CA, Arroyo Y, Bedolla E et al (2006) Properties of AlN-based magnesium-matrix composites produced by pressureless infiltration. Mater Sci Forum 509:105–110CrossRefGoogle Scholar
  5. 5.
    Bedolla E, Lemus-Ruiz J, Contreras A (2012) Synthesis and characterization of Mg-AZ91/AlN composites. Mater Des 38:91–98CrossRefGoogle Scholar
  6. 6.
    Albiter A, León CA, Drew RAL et al (2000) Microstructure and heat-treatment response of Al-2024/TiC composites. Mater Sci Eng A 289:109–115CrossRefGoogle Scholar
  7. 7.
    Reyes A, Bedolla E, Pérez R et al (2016) Effect of heat treatment on the mechanical and microstructural characterization of Mg-AZ91E/TiC composites. Compos Interfaces:1–17Google Scholar
  8. 8.
    Aguilar EA, León CA, Contreras A et al (2002) Wettability and phase formation in TiC/Al-alloys assemblies. Compos Part A 33:1425–1428CrossRefGoogle Scholar
  9. 9.
    Venkatesh TA, Dunand DC (2000) Reactive infiltration processing and secondary compressive creep of NiAl and NiAl-W composites. Metall Mater Trans A 31:781–792CrossRefGoogle Scholar
  10. 10.
    Hsu HC, Chou JY, Tuan WH (2016) Preparation of AlN/Cu composites through a reactive infiltration process. J Asian Ceramic Soc 4:201–204CrossRefGoogle Scholar
  11. 11.
    Kainer KU (ed) (2006) Metal matrix composites custom-made materials for automotive and aerospace engineering. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  12. 12.
    ASM Handbook (2001) Composites, vol 2. ASM International, OhioGoogle Scholar
  13. 13.
    Elahinejad S, Sharifi H, Nasresfahani MR (2018) Vibration effects on the fabrication and the interface of Al–SiC composite produced by the pressureless infiltration method. Surf Rev Lett. Scholar
  14. 14.
    Nakanishi H, Tsunekawa Y, Mohri N et al (1993) Ultrasonic infiltration in alumina particle/molten aluminum system. J Jpn Inst Light Met 43(1):14–19CrossRefGoogle Scholar
  15. 15.
    Midson P, Kilbert RK, Le Beau SE et al (2004) Guidelines for producing magnesium thixomolded semi-solid components used in structural applications. In: Proceedings of the 8th International Conference on Semi-Solid Processing of Alloys and Composites, September 21–23, 2004, Limassol, CyprusGoogle Scholar
  16. 16.
    Montrieux HM, Mertens A, Halleux J et al (2011) Interfacial phenomena in carbon fiber reinforced magnesium alloys processed by squeeze casting and thixomolding. In: European Congress and Exhibition on Advanced Materials and Processes, 12–15 Sep. Montpellier, France, pp 1–25Google Scholar
  17. 17.
    Decker RF, LeBeau SE (2008) Thixomolding. Adv Mater Process 2014:28–29Google Scholar
  18. 18.
    Si YG, You ZY, Zhu JX et al (2016) Microstructure and properties of mechanical alloying particles reinforced aluminum matrix composites prepared by semisolid stirring pouring method. China Foundry 13(3):176–181CrossRefGoogle Scholar
  19. 19.
    Ma H, Lu Y, Lu H et al (2017) Fabrication of Ni/SiC composite powder by mechanical alloying and its effects on properties of copper matrix composites. Int J Mater Res 108(3):213–221CrossRefGoogle Scholar
  20. 20.
    Campbell FC (2010) Structural composite materials. ASM International, OhioGoogle Scholar
  21. 21.
    Fogagnolo JB, Robert MH, Torralba JM (2003) The effects of mechanical alloying on the extrusion process of AA 6061 alloy reinforced with Si3N4. J Braz Soc Mech Sci Eng 25(2):201–206. Scholar
  22. 22.
    Fogagnolo JB, Velasco F, Robert MH et al (2003) Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders. Mater Sci Eng A 342(1–2):131–143CrossRefGoogle Scholar
  23. 23.
    Testani C, Ferraro F, Deodati P et al (2011) Comparison between roll diffusion bonding and hot-isostatic pressing production processes of Ti6Al4V-SiCf metal matrix composites. Mater Sci Forum 678:145–154CrossRefGoogle Scholar
  24. 24.
    Chaudhari GP, Acoff V (2009) Cold roll bonding of multi-layered bi-metal laminate composites. Compos Sci Technol 69(10):1667–1675CrossRefGoogle Scholar
  25. 25.
    Luo JG, Acoff VL (2004) Using cold roll bonding and annealing to process Ti/Al multi-layered composites from elemental foils. Mater Sci Eng A379(1–2):164–172CrossRefGoogle Scholar
  26. 26.
    Shabani A, Toroghinejad MR, Shafyei A (2012) Fabrication of Al/Ni/Cu composite by accumulative roll bonding and electroplating processes and investigation of its microstructure and mechanical properties. Mater Sci Eng A558:386–393CrossRefGoogle Scholar
  27. 27.
    Hosseini M, Pardis N, Manesh HD et al (2017) Structural characteristics of Cu/Ti bimetal composite produced by accumulative roll-bonding (ARB). Mater Des 113:128–136CrossRefGoogle Scholar
  28. 28.
    Motevalli PD, Eghbali B (2015) Microstructure and mechanical properties of Tri-metal Al/Ti/Mg laminated composite processed by accumulative roll bonding. Mater Sci Eng A 628:135–142CrossRefGoogle Scholar
  29. 29.
    Muratoğlu M, Yilmaz O, Aksoy M (2016) Investigation on diffusion bonding characteristics of aluminum metal matrix composites (Al/SiCp) with pure aluminum for different heat treatments. J Mater Process Technol 178(1–3):211–217Google Scholar
  30. 30.
    Lin H, Luo H, Huang W et al (2016) Diffusion bonding in fabrication of aluminum foam sandwich panels. J Mater Process Technol 230:35–41CrossRefGoogle Scholar
  31. 31.
    Zhang XP, Ye L, Mai YW et al (1999) Investigation on diffusion bonding characteristics of SiC particulate reinforced aluminum metal matrix composites (Al/SiCp-MMC). Compos A Appl Sci Manuf 30(12):1415–1421CrossRefGoogle Scholar
  32. 32.
    Raghunathan SK, Persad C, Bourell DL et al (1991) High-energy, high-rate consolidation of tungsten and tungsten-based composite powders. Mater Sci Eng A 131(2):243–253CrossRefGoogle Scholar
  33. 33.
    Srivatsan TS, Lewandowski J (2006) Metal matrix composites: types, reinforcement, processing, properties, and applications. In: Soboyejo WO, Srivatsan TS (eds) Advanced structural materials; properties, design optimization, and applications. CRC Press/Taylor & Francis Group LLC, Boca Raton, pp 275–357CrossRefGoogle Scholar
  34. 34.
    Asthana R, Kumar A, Dahotre NB (eds) (2005) Materials processing and manufacturing science. Elsevier Science & Technology Books, LondonGoogle Scholar
  35. 35.
    Haghshenas M (2015) Metal-matrix composites. Elsevier, Scholar
  36. 36.
    Liu HW, Zhang L, Wang JJ, Du XK (2008) Feasibility analysis of self-reactive spray forming TiC-TiB2-based composite ceramic preforms. Key Eng Mater 368–372:1126–1129CrossRefGoogle Scholar
  37. 37.
    Liu HW, Wang JJ, Sun XF et al (2013) Influence of cooling rate on microstructure of self-reactive spray formed Ti(C,N)-TiB2 composite ceramic preforms. Adv Mater Res 631–632:348–353CrossRefGoogle Scholar
  38. 38.
    Department of Defense Handbook (2002) Composite materials handbook, Vol. 4 Metal matrix composite MIL-HDBK-17-4AGoogle Scholar
  39. 39.
    Zheng X, Huang M, Ding C (2000) Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. Biomaterials 21(8):841–849CrossRefGoogle Scholar
  40. 40.
    Yip CS, Khor KA, Loh NL et al (1997) Thermal spraying of Ti-6Al-4V/hydroxyapatite composites coatings: powder processing and post-spray treatment. J Mater Process Technol 65(1–3):73–79CrossRefGoogle Scholar
  41. 41.
    Shi G, Wang Z, Liang J et al (2011) NiCoCrAl/YSZ laminate composites fabricated by EB-PVD. Mater Sci Eng A 529:113–118CrossRefGoogle Scholar
  42. 42.
    Li Y, Zhao J, Zeng G (2004) Ni/Ni3Al microlaminate composite produced by EB-PVD and the mechanical properties. Mater Lett 58(10):1629–1633CrossRefGoogle Scholar
  43. 43.
    Guo H, Xu H, Bi X, Gong S (2002) Preparation of Al2O3–YSZ composite coating by EB-PVD. Mater Sci Eng A 325(1–2):389–393CrossRefGoogle Scholar
  44. 44.
    Brust S, Röttger A, Theisen W (2016) CVD coating of oxide particles for the production of novel particle-reinforced iron-based metal matrix composites. Open J Appl Sci 6:260–269CrossRefGoogle Scholar
  45. 45.
    Chung DDL (1994) Carbon fiber composites. Butterworth-Heinemann, BostonCrossRefGoogle Scholar
  46. 46.
    Patel RB, Liu J, Scicolone JV et al (2013) Formation of stainless steel carbon nanotube composites using a scalable chemical vapor infiltration process. J Mater Sci 48(3):1387–1395CrossRefGoogle Scholar
  47. 47.
    Zhang G, Hu L, Hu W et al (2013) Mechanical properties of NiAl-Mo composites produced by specially controlled directional solidification. MRS Proc 1516:255–260. Scholar
  48. 48.
    Hu L, Hu W, Gottstein G et al (2012) Investigation into microstructure and mechanical properties of NiAl-Mo composites produced by directional solidification. Mater Sci Eng A 539:211–222CrossRefGoogle Scholar
  49. 49.
    Gunjishima I, Akashi T, Goto T (2002) Characterization of directionally solidified B4C-TiB2 composites prepared by a floating zone method. Mater Trans 43(4):712–720CrossRefGoogle Scholar
  50. 50.
    Zhang H, Springer H, Aparício-Fernandez R et al (2016) Improving the mechanical properties of Fe-TiB2 high modulus steels through controlled solidification processes. Acta Mater 118:187–195CrossRefGoogle Scholar
  51. 51.
    Zhang H, Zhu H, Huang J et al (2018) In-situ TiB2-NiAl composites synthesized by arc melting: chemical reaction, microstructure and mechanical strength. Mater Sci Eng A 719:140–146CrossRefGoogle Scholar
  52. 52.
    Yin L, Xiaonan F, Mingxu Z et al (2005) Chemical reaction of in-situ processing of NiAl/Al2O3 composite by using thermite reaction. J Wuhan Univ Technol Mater Sci 20(4):90–92CrossRefGoogle Scholar
  53. 53.
    Sui B, Zeng JM, Chen P et al (2014) Fabrication of Al2O3 particle reinforced aluminum matrix composite by in situ chemical reaction. Adv Mater Res 915–916:788–791CrossRefGoogle Scholar
  54. 54.
    Peng HX, Fan Z, Wang DZ et al (2000) In situ Al3Ti–Al2O3 intermetallic matrix composite: synthesis, microstructure, and compressive behavior. J Mater Res 15(9):1943–1949CrossRefGoogle Scholar
  55. 55.
    Singla A, Garg R, Saxena M (2015) Microstructure and wear behavior of Al-Al2O3 in situ composites fabricated by the reaction of V2O5 particles in pure aluminum. Green Process Synth 4(6):487–497Google Scholar
  56. 56.
    Lepakova OK, Raskolenko LG, Maksimov YM (2004) Self-propagating high-temperature synthesis of composite material TiB2-Fe. J Mater Sci 39(11):3723–3732CrossRefGoogle Scholar
  57. 57.
    Jin S, Shen P, Zhou D et al (2016) Self-propagating high-temperature synthesis of nano-TiC particles with different shapes by using carbon nano-tube as C source. Nanoscale Res Lett 6(515):1–7Google Scholar
  58. 58.
    Chaubey AK, Prashanth KG, Ray N et al (2015) Study on in-situ synthesis of Al-TiC composite by self-propagating high temperature synthesis process. Mater Sci Indian J 12(12):454–461Google Scholar
  59. 59.
    Kobashi M, Ichioka D, Kanetake N (2010) Combustion synthesis of porous TiC/Ti composite by a self-propagating mode. Materials 3:3939–3947CrossRefGoogle Scholar
  60. 60.
    Pramono A, Kommel L, Kollo L et al (2016) The aluminum based composite produced by self-propagating high temperature synthesis. Mater Sci 22(1):41–43Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Antonio Contreras Cuevas
    • 1
  • Egberto Bedolla Becerril
    • 2
  • Melchor Salazar Martínez
    • 3
  • José Lemus Ruiz
    • 2
  1. 1.Instituto Mexicano del PetróleoCiudad de MéxicoMéxico
  2. 2.Universidad Michoacana de San Nicolás de HidalgoInstituto de Investigación en Metalurgia y MaterialesMoreliaMéxico
  3. 3.Clúster Politécnico Veracruz - IPNPapantla de OlarteMéxico

Personalised recommendations