Advertisement

Stochastic Modeling of Natural Lacustrine Thermokarst Under Stable and Unstable Climate

  • A. S. Victorov
  • T. V. Orlov
  • V. N. Kapralova
  • O. N. Trapeznikova
  • S. A. Sadkov
  • A. V. Zverev
Chapter
Part of the Innovation and Discovery in Russian Science and Engineering book series (IDRSE)

Abstract

Many researches are devoted to the problem of lacustrine-thermokarst plain development. The purpose of this study is a stochastic modeling of the thermokarst plains’ pattern and development, primarily the morphological pattern of their landscapes. The bases of model creation are the approaches of mathematical morphology of landscape with wide use of random process theory. Studying territory type represents a slightly wavy subhorizontal surface with a predominance of different tundra or forest vegetation with the sprinkled lakes, without significant development of the erosion network. Several types of stochastic models were developed. These models were empirically verified at 16 sites all over cryolythozone. Theoretical statistical distributions of the lakes’ number on the randomly chosen site within lacustrine-thermokarst plains correspond to the Poisson distribution on the plots relatively homogenous by the geomorphological, geocryological, and landscape conditions and under various assumptions about the nature of development of the lacustrine-thermokarst plains; this is largely confirmed by empirical data. Theoretical statistical distributions of the thermokarst lake sizes within the lacustrine-thermokarst plains are different under various assumptions about the nature of development of the lacustrine-thermokarst plains on the plots relatively homogenous by the geomorphological, geocryological, and landscape conditions. The analysis of the empirical data shows that the observed distributions of the lakes’ number at randomly chosen site correspond to the Poisson distribution and the distributions of the thermokarst lake sizes in the overwhelming majority correspond to the lognormal distribution and do not agree with other types of distributions being investigated. The analysis leads to a conclusion in favor of a model based on the proportionality of the growth rate of the thermokarst lake size to the average heat loss density through the side surface in case of the synchronous start of the processes of thermokarst lake appearance for every plot.

Keywords

Natural risk Risk assessment Thermokarst Engineering structures Modeling Climate change 

Notes

Acknowledgments

The research was supported by RFBR grant (project No. № 18-05-00723).

References

  1. 1.
    Andresen, C., & Lougheed, V. (2015). Disappearing Arctic tundra ponds: Fine-scale analysis of surface hydrology in drained thaw lake basins over a 65 year period (1948–2013). Journal of Geophysical Research: Biogeosciences, 120, 466–479. https://doi.org/10.1002/2014JG002778.CrossRefGoogle Scholar
  2. 2.
    Arp, C. D., Jones, B., Bondurant, A., Grosse, G., Parsekian, A. D., Romanovsky, V., & Hinkel, K. (2016). Extreme sensitivity of shallow lakes and sublake permafrost to Arctic climate change. In F. Günther & A. Morgenstern (Eds.), XI. International conference on permafrost – book of abstracts (pp. 20–24 June 2016). Potsdam: Bibliothek Wissenschaftspark Albert Einstein. https://doi.org/10.2312/GFZ.LIS.2016.001.CrossRefGoogle Scholar
  3. 3.
    Bondurant, A. C., Arp, C., Jones, B., & Engram, M. (2016). Rates and mechanisms of expansion in thermokarst lakes with bedfast and floating ice regimes on the Arctic coastal plain of northern Alaska 2015 (pp. 703–705), XI. International Conference on Permafrost – Book of Abstracts, 20–24 June 2016, Potsdam, Germany. Bibliothek Wissenschaftspark Albert Einstein. https://doi.org/10.2312/GFZ.LIS.2016.001.
  4. 4.
    Burn, C. R., & Smith, M. W. (1990). Development of thermokarst lakes during the holocene at sites near Mayo, Yukon territory. Permafrost and Periglacial Processes, 1, 161–176.CrossRefGoogle Scholar
  5. 5.
    Dneprovskaya, V. P., Bryksina, N. A., & Polishchuk, Y. U. M. (2009). Izucheniye izmeneniy termokarsta v zone preryvistogo rasprostraneniya vechnoy merzloty Zapadnoy Sibiri na osnove kosmicheskikh snimkov (Study of changes in thermokarst in the zone of intermittent propagation of the permafrost of Western Siberia on the basis of satellite imagery), Issledovaniye Zemli iz kosmosa. – No 4. – pp 88–96.Google Scholar
  6. 6.
    Ershov, E. D. (Ed.). (1989). Geokriologiya SSSR. Srednyaya Sibir’ (Geocryology of the USSR. Middle Siberia). Moscow: Nedra 414 p.Google Scholar
  7. 7.
    Ershov, E. D. (Ed.). (1988). Geokriologiya SSSR. Yevropeyskaya territoriya SSSR (Geocryology of the USSR. European territory of the USSR). Moscow: Nedra 358 p.Google Scholar
  8. 8.
    Ershov, E. D. (Ed.). (1989). Geokriologiya SSSR. Zapadnaya Sibir’ (Geocryology of the USSR. Western Siberia). Moscow: Nedra 454 p.Google Scholar
  9. 9.
    Grechishchev, S. Y., Chistotinov, L. V., & Shur, Y. U. L. (1980). Kriogennyye fiziko-geologicheskiye protsessy i ikh prognoz. (Cryogenic physico-geological processes and their prognosis). Moscow: Nedra 384 p.Google Scholar
  10. 10.
    Grosse, G., Jones, B. M., Nitze, I., Lindgren, P. R., Walter Anthony, K. M., & Romanovsky, V. E. (2016). Massive thermokarst lake area loss in continuous ice-rich permafrost of the northern Seward Peninsula, Northwestern Alaska, 1949–2015 (pp. 739–740), XI. International Conference on Permafrost – Book of Abstracts, 20–24 June 2016, Potsdam, Germany. Bibliothek Wissenschaftspark Albert Einstein. https://doi.org/10.2312/GFZ.LIS.2016.001.
  11. 11.
    Kapralova V.N. (2014) Zakonomernosti razvitiya termokarstovykh protsessov v predelakh ozerno-termokarstovykh ravnin (na osnove podkhodov matematicheskoy morfologii landshafta) (Regularities of the development of thermokarst processes within the lacustrine-thermokarst plains based on the approaches of the mathematical morphology of the landscape), Author’s Candidate’s summery, Moscow IGE RAN, 24 p.Google Scholar
  12. 12.
    Kapralova, V. N., & Victorov, A. S. (2009). Modelirovaniye morfologicheskoy struktury ozerno-termokarstovykh ravnin i yego geoekologicheskoye znacheniye. (Modeling of the morphological structure of the lake-thermokarst plains and its geo-ecological significance), Modelirovaniye pri reshenii geoekologicheskikh zadach. Sergeyevskiye chteniya. Is. 11. – Moscow, Geos, 174–178.Google Scholar
  13. 13.
    Karlin, S. (1971). Osnovy teorii sluchaynykh protsessov. (Fundamentals of the theory of random processes). Moscow: Mir 536 p.Google Scholar
  14. 14.
    Karlsson, J. M., Lyon, S. W., & Destouni, G. (2014). Temporal behavior of lake size-distribution in a thawing permafrost landscape in Northwestern Siberia. Remote Sensing, 6, 621–636.CrossRefGoogle Scholar
  15. 15.
    Korolyuk, V. S., Portenko, N. I., Skorokhod, A. V., et al. (1985). Spravochnik po teorii veroyatnosti i matematicheskoy statistike (A handbook on probability theory and mathematical statistics). Moscow: Nauka 640 p.Google Scholar
  16. 16.
    Kramer, G. (1970). Matematicheskiye metody statistiki. (Mathematical methods of statistics). Moscow: Mir 648 p.Google Scholar
  17. 17.
    Kravtsova, V. I., & Bystrova, A. G. (2009). Izucheniye izmeneniy rasprostraneniya termokarstovykh ozer Rossii po raznovremennym kosmicheskim snimkam. Kriosfera Zemli, 15(2), 16–26.Google Scholar
  18. 18.
    Kravtsova, V. I., & Tarasenko, T. V. (2009). Izucheniye i kartografirovaniye dinamiki termokarstovykh ozer na territorii Zapadnoy Sibiri po raznovremennym kosmicheskim snimkam, Vos’moye sibirskoye soveshchaniye po klimato-ekologicheskomu monitoringu. Materialy rossiyskoy konferentsii 8–10 oktyabrya 2009 (Study and mapping of the dynamics of thermokarst lakes in the territory of Western Siberia for various space images, The Eighth Siberian Conference on Climate and Environmental Monitoring. Materials of the Russian Conference October 8–10, 2009) (pp. 273–275). Tomsk: Agraf-Press.Google Scholar
  19. 19.
    Kudryavcev, V. A. (1958). O thermokarste,Vopr fis. Geogr. Polar stran Tom 1 (About thermokarst, Questions of physical geography of polar regions, vol 1).Google Scholar
  20. 20.
    Makarycheva, E., Sergeev, D., Kapralova, V., & Jin, H. (2014). Water level regime of thermokarst lakes in the mountain areas (p. 206). Book of Abstracts of EUCOP4 – 4th European Conference on Permafrost. 2014.Google Scholar
  21. 21.
    Metodicheskoye rukovodstvo po inzhenerno-geologicheskoy s”yemke masshtaba 1:200 000 (1:100000-1:500000). (Methodical guidelines for engineering-geological survey of a scale of 1: 200 000 (1: 100000-1: 500000)). (1978). Moscow: Nedra. 391 p.Google Scholar
  22. 22.
    Morgenstern, A., Grosse, G., Günther, F., Fedorova, I., & Schirrmeister, L. (2011). Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta. The Cryosphere, 5(4), 849–867. https://doi.org/10.5194/tc-5-849-2011.CrossRefGoogle Scholar
  23. 23.
    Morgenstern, A., Mathias, U., Günther, F., Roessler, S., Fedorova, I. V., Rudaya, N., Wetterich, Boike, J., & Schirrmeister, L. (2013). Evolution of thermokarst in East Siberian ice-rich permafrost: A case study. Geomorphology, 201, 363–379. https://doi.org/10.1016/j.geomorph.2013.07.011.CrossRefGoogle Scholar
  24. 24.
    Muster, S., Roth, K., Langer, M., Lange, S., Cresto Aleina, F., Bartsch, A., Morgenstern, A., Grosse, G., Jones, B., Sannel, A. B. K., Sjöberg, Y., Günther, F., Andresen, C., Veremeeva, A., Lindgren, P. R., Bouchard, F., Lara, M. J., Fortier, D., Charbonneau, S., Virtanen, T. A., Hugelius, G., Palmtag, J., Siewert, M. B., Riley, W. J., Koven, C. D., & Boike, J. (2017). PeRL: A circum-Arctic permafrost region pond and Lake database. Earth System Science Data, 9, 317–348. https://doi.org/10.5194/essd-9-317-2017.CrossRefGoogle Scholar
  25. 25.
    Olefeldt D., Goswami, S., Grosse, G., Hayes, D. J., Hugelius, G., Kuhry, P., Sannel, B., Schuur, E. A. G., & Turetsky, M. R. (2016). Arctic circumpolar distribution and soil carbon of thermokarst landscapes. 2015.Google Scholar
  26. 26.
    Perl’shteyn, G. Z., Pavlov, A. V., Levashov, A. V., & Sergeyev, D. O. (2005). Netemperaturnyye faktory teploobmena deyatel’nogo sloya s atmosferoy (Non-temperature factors of heat exchange of the active layer with the atmosphere), Materialy Tret’yey konferentsii geokriologov Rossii, MGU, (pp. 86–91).Google Scholar
  27. 27.
    Polishchuk, V. Y. U., & Polishchuk, Y. U. M. (2013). Geoimitatsionnoye modelirovaniye poley termokarstovykh ozer v zonakh merzloty (Geoimitational modeling of fields of thermokarst lakes in permafrost zones). Khanty-Mansiysk: UIP YUGU 129 p.Google Scholar
  28. 28.
    Polishchuk, Y. U. M., Bryksina, N. A., & Kupriyanov, M. A. (2016). Sravnitel’nyy analiz izmeneniy razmerov ozer v zone merzloty Zapadnoy i Vostochnoy Sibiri po kosmicheskim snimkam (A comparative analysis of changes in the size of lakes in the permafrost zone of Western and Eastern Siberia from satellite imagery). Geoinformatika, (1), 64–67. Google Scholar
  29. 29.
    Riordan, B., Verbyla, D., & McGuire, A. D. (2006). Shrinking ponds in subarctic Alaska based on 1950–2002 remotely sensed images. Journal of Geophysical Research, 111, G04002. https://doi.org/10.1029/2005JG000150.CrossRefGoogle Scholar
  30. 30.
    Sejourne, A., Costard, F., Fedorov, A., Gargani, J., Skorve, J., Masse, M., & Mege, D. (2015). Evolution of the banks of thermokarst lakes in Central Yakutiya (Central Siberia) due to retrogressive thaw slump activity controlled by insolation. Geomorphology, 241, 31–40, https://www.sciencedirect.com/science/article/pii/S0169555X15001841.CrossRefGoogle Scholar
  31. 31.
    Shur, Y. U. L. (1977). Termokarst (k teplofizicheskim osnovam ucheniya o zakonomernostyakh razvitiya protsessa) (Thermokarst (to the thermophysical foundations of the doctrine of the laws of the development of the process)). Moscow: Nedra 80 p.Google Scholar
  32. 32.
    Smith, L. C., Sheng, Y., Macdonald, G. M., & Hinzman, L. D. (2005). Disappearing Arctic lakes. Science, 308(3), 14.Google Scholar
  33. 33.
    Streleckaya, I. D., & Turkina, O. S. (1987). Merzlotnye ploskobugristye torfyaniki Nadym-Purovskogo mezhdurechya Zapadnoy Sibiri, Issledovaniya merzlyh gruntov v rayonah osvoyeniya (Permafrost flathial peatlands of Nadym-Purovsky area of West Siberia, Researches of permafrost at regions of engineering activity)–M (pp. 41–49). Stroyizdat.Google Scholar
  34. 34.
    Tomirdiaro, S. V. (1972). Vechnaya merzlota i osvoyeniye gornykh stran i nizmennostey. (Permafrost and development of mountainous countries and lowlands). Magadan: Knizhnoye izdatel’stvo 174 p.Google Scholar
  35. 35.
    Tumskoy V. Ye. (2002). Termokarst i yego rol’ v razvitii regiona morya Laptevykh v pozdnem pleystotsene i golotsene. (Thermokarst and its role in the development of the Laptev Sea region in the late Pleistocene and Holocene), Author’s Candidate’s summery. Moscow state university: Moscow. Google Scholar
  36. 36.
    Tumskoy V. Ye., Nikol’skiy P. A., Basilyan A. E., Kuznetsova T. V., & Gavrilov A. V. (2000). Evolyutsiya mnogoletnemerzlykh porod na poberezh’ye proliva Dmitriya Lapteva v pozdnem kaynozoye – Tezisy konferentsii “Ritmy prirodnykh protsessov v kriosfere Zemli” (Evolution of permafrost on the strait of Dmitrii Laptev in the Late Cenozoic – theses of the conference “Rhythms of Natural Processes in the Earth’s Cryosphere”) (pp. 123–125). Pushchino.Google Scholar
  37. 37.
    Veremeeva, A., & Gubin, S. (2009). Modern tundra landscapes of the Kolyma Lowland and their evolution in the Holocene. Permafrost and Periglacial Processes, 20(4), 399–406.CrossRefGoogle Scholar
  38. 38.
    Victorov, A. S. (1995). Matematicheskaya model’ termokarstovykh ozernykh ravnin kak odna iz osnov interpretatsii materialov kosmicheskikh s”yemok, Issledovaniye Zemli iz kosmosa, (5), 42–50.Google Scholar
  39. 39.
    Victorov, A. S. (1998). Matematicheskaya morfologiya landshafta (Mathematical morphology of the landscape). Moscow: Tratek 191 p.Google Scholar
  40. 40.
    Victorov, A. S. (2002). Mathematical models of landscape patterns for geological interpretation of remote sensing data, Proceedings of the 8th annual Conference of International Association for Mathematical Geology (pp. 571–576). Berlin: IAMG 2002.Google Scholar
  41. 41.
    Victorov, A. S. (2006). Osnovnyye problemy matematicheskoy morfologii landshafta (The main problems of the mathematical morphology of the landscape). Moscow: Nauka 252 p.Google Scholar
  42. 42.
    Voskresenskiy, K. S. (1999). Sovremennyye rel’yefoobrazuyushchiye protsessy na ravninakh Severa Rossii, (Contemporary relief-forming processes on the plains of the North of Russia). Author’s Doctor’s summery.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • A. S. Victorov
    • 1
  • T. V. Orlov
    • 1
  • V. N. Kapralova
    • 1
  • O. N. Trapeznikova
    • 1
  • S. A. Sadkov
    • 1
  • A. V. Zverev
    • 1
  1. 1.Sergeev Institute of Environmental Geoscience RAS (IEG RAS)MoscowRussia

Personalised recommendations