Advertisement

Generating an Album with the Best Media Using Computer Vision

  • Tancredo Souza
  • João Paulo Lima
  • Veronica Teichrieb
  • Carla Nascimento
  • Fabio Q. B. da Silva
  • Andre L. M. Santos
  • Helder Pinho
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10919)

Abstract

Due to the increase in smartphone usage, it became easier to register memorable moments with a more accessible camera. To ensure a nice capture was made, users often take multiple shots from a scene, later filtering them based on some quality criteria. However, sometimes this may be unfeasible to do manually. To address this issue, this work initially defines relevant characteristics present in a good personal picture or video. We then show how to automatically search for these aspects using computer vision algorithms, successfully assessing personal media based on these aspects. Moreover, we show that it was possible to use this proposed solution in a real-world application, improving the generation of a personal album containing the best pictures and videos.

Keywords

Heuristics Image Video Content analysis Media description Album generation 

Notes

Acknowledgements

The results presented in this paper have been developed as part of a collaborative project between Samsung Institute for Development of Informatics (Samsung/SIDI) and the Centre of Informatics at the Federal University of Pernambuco (CIn/UFPE), financed by Samsung Eletronica da Amazonia Ltda., under the auspices of the Brazilian Federal Law of Informatics no. 8248/91. The authors would like to thank the support received from the Samsung/SIDI team. Professor Fabio Q. B. da Silva holds a research grant from the Brazilian National Research Council (CNPq), process #314523/2009-0.

References

  1. 1.
    Adams, A.: The Negative: Exposure and Development Basic Photo 2, vol. 98. Morgan and Lester, New York (1948)Google Scholar
  2. 2.
    Bosch, M.: Imageclef experimental evaluation in visual information retrieval. Inf. Retr. 1, 4 (2016)Google Scholar
  3. 3.
    Chang, H., Yu, F., Wang, J., Ashley, D., Finkelstein, A.: Automatic triage for a photo series. ACM Trans. Graph. (TOG) 35(4), 148 (2016)CrossRefGoogle Scholar
  4. 4.
    Deng, Y., Loy, C.C., Tang, X.: Image aesthetic assessment: an experimental survey. IEEE Sig. Process. Mag. 34(4), 80–106 (2017)CrossRefGoogle Scholar
  5. 5.
    Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10602-1_48CrossRefGoogle Scholar
  6. 6.
    Luo, Y., Tang, X.: Photo and video quality evaluation: focusing on the subject. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 386–399. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88690-7_29CrossRefGoogle Scholar
  7. 7.
    Mavridaki, E., Mezaris, V.: No-reference blur assessment in natural images using fourier transform and spatial pyramids. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 566–570. IEEE (2014)Google Scholar
  8. 8.
    Mei, T., Hua, X.S., Zhu, C.Z., Zhou, H.Q., Li, S.: Home video visual quality assessment with spatiotemporal factors. IEEE Trans. Circuits Syst. Video Technol. 17(6), 699–706 (2007)CrossRefGoogle Scholar
  9. 9.
    Mei, T., Zhu, C.Z., Zhou, H.Q., Hua, X.S.: Spatio-temporal quality assessment for home videos. In: Proceedings of the 13th Annual ACM International Conference on Multimedia, pp. 439–442. ACM (2005)Google Scholar
  10. 10.
    Mittal, A., Moorthy, A.K., Bovik, A.C.: Blind/referenceless image spatial quality evaluator. In: 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pp. 723–727, November 2011Google Scholar
  11. 11.
    Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)Google Scholar
  12. 12.
    Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. ACM Trans. Graph. (TOG) 21(3), 267–276 (2002)CrossRefGoogle Scholar
  13. 13.
    Tzelepis, C., Mavridaki, E., Mezaris, V., Patras, I.: Video aesthetic quality assessment using kernel support vector machine with isotropic gaussian sample uncertainty (ksvm-igsu). In: 2016 IEEE International Conference on Image Processing (ICIP). pp. 2410–2414. IEEE (2016)Google Scholar
  14. 14.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, p. I. IEEE (2001)Google Scholar
  15. 15.
    Wu, S., Kan, M., He, Z., Shan, S., Chen, X.: Funnel-structured cascade for multi-view face detection with alignment-awareness. Neurocomputing 221, 138–145 (2017)CrossRefGoogle Scholar
  16. 16.
    Yang, B., Gu, F., Niu, X.: Block mean value based image perceptual hashing. In: International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2006, pp. 167–172. IEEE (2006)Google Scholar
  17. 17.
    Yang, C.Y., Yeh, H.H., Chen, C.S.: Video aesthetic quality assessment by combining semantically independent and dependent features. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1165–1168. IEEE (2011)Google Scholar
  18. 18.
    Zhang, J., Shan, S., Kan, M., Chen, X.: Coarse-to-fine auto-encoder networks (CFAN) for real-time face alignment. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 1–16. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10605-2_1CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Tancredo Souza
    • 1
  • João Paulo Lima
    • 1
    • 2
  • Veronica Teichrieb
    • 1
  • Carla Nascimento
    • 3
  • Fabio Q. B. da Silva
    • 4
  • Andre L. M. Santos
    • 4
  • Helder Pinho
    • 5
  1. 1.Voxar Labs, Centro de Informática, Universidade Federal de PernambucoRecifeBrazil
  2. 2.Departamento de Estatística e Informática, Universidade Federal Rural de PernambucoRecifeBrazil
  3. 3.Projeto de Pesquisa e Desenvolvimento CIn/Samsung, Universidade Federal de PernambucoRecifeBrazil
  4. 4.Centro de Informática, Universidade Federal de PernambucoRecifeBrazil
  5. 5.Samsung Instituto de Desenvolvimento para a InformáticaCampinasBrazil

Personalised recommendations