Advertisement

Can We Distinguish Pragmatic from Hedonic User Experience Qualities with Implicit Measures?

  • Kathrin Pollmann
  • Victoria Sinram
  • Nora Fronemann
  • Mathias Vukelić
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10918)

Abstract

User Experience research mainly makes use of self-reported measures to assess the user’s experience when using a technical product, especially regarding hedonic product qualities. Our study investigates whether pragmatic and hedonic qualities can be distinguished using two types of implicit measure: behavioural and neurophysiological. Participants interacted with two different software tools designed to emphasize hedonic and pragmatic qualities, respectively. Their implicit evaluations of the two prototypes were examined with the Approach Avoidance Task (AAT) and simultaneous electroencephalographic recordings (EEG), using snapshots from the interaction scenarios. While the AAT showed no differences, the analysis of event-related EEG potentials revealed differences around 300 ms after stimulus presentation. Significant higher cortical activity in the frontal cortex was found for approach tendencies towards snapshots taken from the hedonic prototype interaction. Higher potentials in the parietal (motor) cortex were found for avoidance tendencies towards the pragmatic prototype. The findings show that hedonic and pragmatic user experience qualities can be distinguished based on neuroelectrical data.

Keywords

User Experience Implicit measures Approach Avoidance Task Electroencephalography EEG 

References

  1. 1.
    Bargas-Avila, J.A., Hornbæk, K.: Old wine in new bottles or novel challenges: a critical analysis of empirical studies of user experience. In: Proceedings of the 2011 Annual Conference on Human Factors in Computing Systems, pp. 2689–2698. ACM, New York (2011).  https://doi.org/10.1145/1978942.1979336
  2. 2.
    ISO: Ergonomics of human-system interaction – Part 210: Human-centered design for interactive systems 2.15 (ISO 9241-210 2.15) (2009)Google Scholar
  3. 3.
    Hassenzahl, M.: The thing and I: understanding the relationship between user and product. In: Blythe, M.A., Monk, A.F., Overbeeke, K., Wright, P.C. (eds.) Funology: From Usability to Enjoyment, pp. 31–42. Kluwer Academic Publishers, Dordrecht (2003)CrossRefGoogle Scholar
  4. 4.
    Hassenzahl, M.: User experience (UX): towards an experiential perspective on product quality. In: Proceedings of the 20th International Conference of the Association Francophone d’Interaction Homme-Machine, pp. 11–15. ACM, New York (2008).  https://doi.org/10.1145/1512714.1512717
  5. 5.
    Sproll, S., Peissner, M., Sturm, C., Burmester, M.: UX concept testing: integration von user experience in frühen Phasen der Produktentwicklung. In: Brau, H., Diefenbach, S., Göring, K., Peissner, M., Petrovic, K. (eds.) Usability Professionals 2010. Jahresband 2010 der Workshops der German Usability Professionals’ Association e.V, pp. 1–6. Fraunhofer Verlag, Stuttgart (2010)Google Scholar
  6. 6.
    Hassenzahl, M.: The hedonic/pragmatic model of user experience. In: Law, E.L.-C., Vermeeren, A., Hassenzahl, M., Blythe, M.A. (eds.) Towards a UX Manifesto. COST294-MAUSE Affiliated Workshop, Lancaster, UK, pp. 10–14 (2007)Google Scholar
  7. 7.
    Väänänen-Vainio-Mattila, K., Roto, V., Hassenzahl, M.: Towards practical user experience evaluation methods. In: Meaningful Measures: Valid Useful User Experience Measurement (VUUM), pp. 19–22 (2008)Google Scholar
  8. 8.
    Nosek, B.A., Hawkins, C.B., Frazier, R.S.: Implicit social cognition: from measures to mechanisms. Trends Cogn. Sci. (2011).  https://doi.org/10.1016/j.tics.2011.01.005CrossRefGoogle Scholar
  9. 9.
    Strasser, E., Weiss, A., Tscheligi, M. (eds.): Affect misattribution procedure: an implicit technique to measure user experience in HRI. In: Proceedings of the 7th Annual ACM/IEEE International Conference on Human-Robot Interaction – HRI 2012. ACM (2012)Google Scholar
  10. 10.
    Kahneman, D.: Maps of bounded rationality: a perspective on intuitive judgment and choice. In: Frangsmyr, T. (ed.) Les Prix Nobel: The Nobel Prizes, pp. 449–489. Nobel Found, Stockholm (2002)Google Scholar
  11. 11.
    Adams, S.A., Matthews, C.E., Ebbeling, C.B., Moore, C.G., Cunningham, J.E., Fulton, J., Herbert, J.R.: The effect of social desirability and social approval on self-reports of physical activity. Am. J. Epidemiol. 161(4), 389–398 (2005).  https://doi.org/10.1093/aje/kwi054CrossRefGoogle Scholar
  12. 12.
    Greenwald, A.G., McGhee, D.E., Schwartz, J.L.K.: Measuring individual differences in implicit cognition. The implicit association test. J. Pers. Soc. Psychol. 74(6), 1464 (1998)CrossRefGoogle Scholar
  13. 13.
    Collins, A.M., Loftus, E.F.: A spreading-activation theory of semantic processing. Psychol. Rev. 82(6), 407 (1975)CrossRefGoogle Scholar
  14. 14.
    Devezas, T., Giesteira, B.: Using the implicit association test for interface-based evaluations. In: ACHI 2014: The Seventh International Conference on Advances in Computer-Human Interactions, pp. 9–16 (2014)Google Scholar
  15. 15.
    Payne, B.K., Cheng, C.M., Govorun, O., Steward, B.D.: An inkblot for attitudes: affect misattribution as implicit measurement. J. Pers. Soc. Psychol. 89(3), 277 (2005).  https://doi.org/10.1037/0022-3514.89.3.277CrossRefGoogle Scholar
  16. 16.
    Payne, K., Lundberg, K.: The affect misattribution procedure. Ten years of evidence on reliability, validity, and mechanisms. Soc. Pers. Psychol. Compass 8(12), 672–686 (2014)CrossRefGoogle Scholar
  17. 17.
    Schmettow, M., Noordzij, M.L., Mundt, M. (eds.): An implicit test of UX: individuals differ in what they associate with computers. In: Proceeding of the Thirty-First Annual CHI Conference on Human Factors in Computing Systems - CHI 2013. ACM (2013)Google Scholar
  18. 18.
    Rinck, M., Becker, E.S.: Approach and avoidance in fear of spiders. J. Behav. Ther. Exp. Psychiatry 38(2), 105–120 (2007).  https://doi.org/10.1016/j.jbtep.2006.10.001CrossRefGoogle Scholar
  19. 19.
    Heuer, K., Rinck, M., Becker, E.S.: Avoidance of emotional facial expressions in social anxiety: the approach–avoidance task. Behav. Res. Ther. 45(12), 2990–3001 (2007).  https://doi.org/10.1016/j.brat.2007.08.010CrossRefGoogle Scholar
  20. 20.
    Wiers, R.W., Rinck, M., Dictus, M., van den Wildenberg, E.: Relatively strong automatic appetitive action-tendencies in male carriers of the OPRM1 G-allele. Genes Brain Behav. 8(1), 101–106 (2009).  https://doi.org/10.1111/j.1601-183X.2008.00454.xCrossRefGoogle Scholar
  21. 21.
    Nunez, P.L., Srinivasan, R.: Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press, New York (2006)CrossRefGoogle Scholar
  22. 22.
    Sebanz, N., Knoblich, G., Prinz, W., Wascher, E.: Twin peaks: an ERP study of action planning and control in coacting individuals. J. Cogn. Neurosci. 18(5), 859–870 (2006)CrossRefGoogle Scholar
  23. 23.
    Sonnleitner, A., Pawlowski, M., Kässer, T., Peissner, M.: Experimentally manipulating positive user experience based on the fulfilment of user needs. In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013. LNCS, vol. 8120, pp. 555–562. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40498-6_45CrossRefGoogle Scholar
  24. 24.
    Axure: Powerful Prototypes without Coding. https://www.axure.com/. Accessed 13 Dec 2017
  25. 25.
    Zeiner, K.M., Laib, M., Schippert, K., Burmester, M.: Identifying experience categories to design for positive experiences with technology at work. In: CHI 2016. Extended Abstracts (2016)Google Scholar
  26. 26.
    Laugwitz, B., Schrepp, T., Held, M.: Konstruktion eines Fragebogens zur Messung der User Experience von Softwareprodukten. In: Heinecke, A.M., Paul, H. (eds.) Mensch und Computer. im Strukturwandel, pp. 125–134. Oldenbourg Verlag, München (2006)Google Scholar
  27. 27.
    Minge, M., Riedel, L.: meCUE – Ein modularer Fragebogen zur Erfassung des Nutzungserlebens. In: Boll, S., Maaß, S., Malaka, R. (eds.) Mensch und Computer. Interaktive Vielfalt, pp. 89–98. Oldenbourg Verlag, München (2013)Google Scholar
  28. 28.
    Brain Products: Solutions for neurophysiological research. http://www.brainproducts.com/. Accessed 13 Dec 2017
  29. 29.
    Delorme, A., Makeig, S.: EEGLAB. An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)CrossRefGoogle Scholar
  30. 30.
    Hipp, J.F., Siegel, M.: Dissociating neuronal gamma-band activity from cranial and ocular muscle activity in EEG. Front. Hum. Neurosci. 7, 338 (2013)CrossRefGoogle Scholar
  31. 31.
    Blankertz, B., Tangermann, M., Vidaurre, C., Fazli, S., Sannelli, C., Haufe, S., Maeder, C., Ramsey, L., Sturm, I., Curio, G.: The Berlin brain–computer interface: non-medical uses of BCI technology. Front. Neurosci. 4, 198 (2010)CrossRefGoogle Scholar
  32. 32.
    Maris, E., Oostenveld, R.: Nonparametric statistical testing of EEG-and MEG-data. J. Neurosci. Methods 164(1), 177–190 (2007).  https://doi.org/10.1016/j.jneumeth.2007.03.024CrossRefGoogle Scholar
  33. 33.
    Maris, E., Schoffelen, J.-M., Fries, P.: Nonparametric statistical testing of coherence differences. J. Neurosci. Methods 163(1), 161–175 (2007).  https://doi.org/10.1016/j.jneumeth.2007.02.011CrossRefGoogle Scholar
  34. 34.
    Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.-M.: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. (2011).  https://doi.org/10.1155/2011/156869
  35. 35.
    Foti, D., Hajcak, G.: Deconstructing reappraisal: descriptions preceding arousing pictures modulate the subsequent neural response. J. Cogn. Neurosci. 20(6), 977–988 (2008)CrossRefGoogle Scholar
  36. 36.
    Ernst, L.H., Plichta, M.M., Lutz, E., Zesewitz, A.K., Tupak, S.V., Dresler, T., Ehlis, A.-C., Fallgatter, A.J.: Prefrontal activation patterns of automatic and regulated approach–avoidance reactions–a functional near-infrared spectroscopy (fNIRS) study. Cortex 49(1), 131–142 (2013)CrossRefGoogle Scholar
  37. 37.
    Bechara, A., Tranel, D., Damasio, H., Damasio, A.R.: Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cereb. Cortex 6(2), 215–225 (1996)CrossRefGoogle Scholar
  38. 38.
    Tuch, A.N., Hornbæk, K.: Does Herzberg’s notion of hygienes and motivators apply to user experience? ACM Trans. Comput.-Hum. Interact. 22(4), 1–24 (2015)CrossRefGoogle Scholar
  39. 39.
    Tuch, A.N., van Schaik, P., Hornbæk, K.: Leisure and work, good and bad. ACM Trans. Comput.-Hum. Interact. (2016).  https://doi.org/10.1145/2994147

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kathrin Pollmann
    • 1
  • Victoria Sinram
    • 2
  • Nora Fronemann
    • 2
  • Mathias Vukelić
    • 1
  1. 1.Institute of Human Factors and Technology Management IATUniversity of StuttgartStuttgartGermany
  2. 2.Fraunhofer Institute for Industrial Engineering IAOStuttgartGermany

Personalised recommendations