Advertisement

Gauge Invariance for Gravitation and Gradient Continuum

  • Lalaonirina R. Rakotomanana
Chapter
Part of the Progress in Mathematical Physics book series (PMP, volume 73)

Abstract

Geometrization of continuum physics that is the formulation of constitutive laws and conservation laws equations with respect to a reference spacetime involves some steps. First of all, physical measurable quantities should be identified with geometrical variables (metric, torsion, and curvature on the material manifold) and other additional variables if any. Second point, the spacetime is generally a dynamical background with its metric, torsion, and curvature, such is the case for general relativity. Then it is required to specify how all these geometrical variables are generated and modified by physical objects, namely material particle, material elements as line, surface, volume, defects, and how these physical objects evolve during the interaction of the continuum matter and the spacetime.

References

  1. Acedo L (2015) Autoparallel vs. Geodesic trajectories in a model of torsion gravity. Universe 1:422–445CrossRefGoogle Scholar
  2. Agiasofitou EK, Lazar M (2009) Conservation and balance laws in linear elasticity. J Elast 94:69–85Google Scholar
  3. Aldrovandi R, Pereira JG (2007) Gravitation: on search of the missing torsion. Ann Fond Louis de Broglie 32(2–3):229–251Google Scholar
  4. Ali SA, Cafaro C, Capozziello S, Corda C (2009) On the Poincaré gauge theory of gravitation. Int J Theor Phys 48:3426–3448MathSciNetzbMATHCrossRefGoogle Scholar
  5. Anderson IM (1978) On the structure of divergence-free tensors. J Math Phys 19(12):2570–2575MathSciNetzbMATHCrossRefGoogle Scholar
  6. Anderson IM (1981) The principle of minimal gravitational coupling. Arch Ration Mech Anal 75:349–372MathSciNetzbMATHCrossRefGoogle Scholar
  7. Antonio TN, Rakotomanana L (2011) On the form-invariance of Lagrangian function for higher gradient continuum. In: Altenbach H, Maugin G, Erofeev V (eds) Mechanics of generalized continua. Springer, New York, pp 291–322Google Scholar
  8. Antonio TN, Buisson M, Rakotomanana L (2011) Wave propagation within some non-homogeneous continua. Académie des Sciences de Paris: Comptes Rendus Mécanique 339:779–788Google Scholar
  9. Appleby PG (1977) Inertial frames in classical mechanics. Arch Ration Mech Anal 67(4):337–350Google Scholar
  10. Bain J (2004) Theories of Newtonian gravity and empirical indistinguishability. Stud Hist Philos Mod Phys 35:345–376MathSciNetzbMATHCrossRefGoogle Scholar
  11. Baldacci R, Augusti V, Capurro M (1979) A micro relativistic dislocation theory. Lincei Memoria Sc Fisiche, ecc S VIII, vol XV, Sez II 2:23–68Google Scholar
  12. Banerjee R, Roy D (2011) Poincaré gauge, Hamiltonian symmetries, and trivial gauge transformations. Phys Rev D 84:124034-1/8Google Scholar
  13. Bernal AN, Sánchez M (2003) Leibnizian, Galilean, and Newtonian structures of spacetime. J Math Phys 44(3):1129–1149MathSciNetzbMATHCrossRefGoogle Scholar
  14. Betram A, Svendsen B (2001) On material objectivity and reduced constitutive equations. Arch Mech 53(6):653–675Google Scholar
  15. Bilby BA, Bullough R, Smith E (1955) Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry. Proc R Soc Lond A 231:263–273MathSciNetCrossRefGoogle Scholar
  16. Birkhoff GD, Langer RE (1923) Relativity and modern physics. Harvard University Press, BostonGoogle Scholar
  17. Boehmer CG, Downes RJ (2014) From continuum mechanics to general relativity. Int J Mod Phys D 23(12):1442015/1-6Google Scholar
  18. Bruzzo U (1987) The global Utiyama theorem in Einstein–Cartan theory. J Math Phys 28(9):2074–2077MathSciNetzbMATHCrossRefGoogle Scholar
  19. Capoziello S, De Laurentis D (2009) Gravity from local Poincaré gauge invariance. Int J Geom Meth Mod Phys 6(1):1–24Google Scholar
  20. Capoziello S, De Laurentis D (2011) Extended theories of gravity. Phys Rep 509:167–321Google Scholar
  21. Capozziello S, De Laurentis M, Francaviglia M, Mercadante S (2009) From dark energy and dark matter to dark metric. Found Phys 39:1161–1176MathSciNetzbMATHCrossRefGoogle Scholar
  22. Cartan E (1922) Sur les équations de la gravitation d’Einstein. J Math Pures Appl 1:141–203Google Scholar
  23. Cartan E (1986) On manifolds with affine connection and the theory of general relativity (translated by A. Magon and A. Ashtekar). Monographs and textbooks in physical science, vol 1. Bibliopolis, NaplesGoogle Scholar
  24. Carter B (1973) Elastic perturbation theory in general relativity and a variation principle for a rotating solid star. Commun Math Phys 30:261–286MathSciNetzbMATHCrossRefGoogle Scholar
  25. Carter B, Quintana H (1977) Gravitational and acoustic waves in an elastic medium. Phys Rev D 16(10):2928–2938CrossRefGoogle Scholar
  26. Cho YM (1976a) Einstein Lagrangian as the translational Yang-Mills Lagrangian. Phys Rev D 14(10):2521–2525MathSciNetCrossRefGoogle Scholar
  27. Clayton JD, Bammann DJ, McDowell DL (2005) A geometric framework for the kinematics of crystals with defects. Philos Mag 85(33–35):3983–4010CrossRefGoogle Scholar
  28. Clifton T, Ferreira PG, Padilla A, Skordis C (2012) Modified gravity and cosmology. Phys Rep 513:1–189MathSciNetCrossRefGoogle Scholar
  29. Curnier A, Rakotomanana LR (1991) Generalized strain and stress measures: critical survey and new results. Eng Trans (Pol Acad Sci) 39(3–4):461–538Google Scholar
  30. Dadhich N, Pons JM (2012) On the equivalence if the Einstein-Hilbert and the Einstein-Palatini formulations of general relativity for an arbitrary connection. Gen Relativ Gravit 44:2337–2352MathSciNetzbMATHCrossRefGoogle Scholar
  31. Defrise P (1953) Analyse géométrique de la cinématique des milieux continus. Institut Royal Météorologique de Belgique – Publications Série B 6:5–63Google Scholar
  32. Dirac PAM (1974) An action principle for the motion of particles. Gen Relativ Gravit 5(6):741–748MathSciNetCrossRefGoogle Scholar
  33. Dixon WG (1975) On the uniqueness of the Newtonian theory as a geometric theory of gravitation. Commun Math Phys 45:167–182MathSciNetzbMATHCrossRefGoogle Scholar
  34. Duval C, Kunzle HP (1978) Dynamics of continua and particles from general covariance of Newtonian gravitation theory. Rep Math Phys 13(3):351–368MathSciNetzbMATHCrossRefGoogle Scholar
  35. Duval C, Burdet G, Kunzle HP, Perrin M (1985) Bargmann structures and Newton–Cartan theory. Phys Rev D 31(8):1841–1853MathSciNetCrossRefGoogle Scholar
  36. Ehlers J (1973) The nature and concept of spacetime. In: Mehra J (ed) The Physicist’s concept of nature. Reidel Publishing Company, Dordrecht, pp 71–91Google Scholar
  37. Ehlers J, Geroch R (2004) Equation of motion of small bodies in relativity. Ann Phys 309:232–236MathSciNetzbMATHCrossRefGoogle Scholar
  38. Exirifard Q, Sheikh-Jabbari MM (2008) Lovelock gravity at the crossroads of Palatini and metric formulations. Phys Lett B 661:158–161MathSciNetzbMATHCrossRefGoogle Scholar
  39. Ferraro R, Fiorini F (2011) Spherical symmetric static spacetimes in vacuum f(T) gravity. Phys Rev D 84:083518-1/8Google Scholar
  40. Fiziev P, Kleinert H (1995) New action principle for classical particle trajectories in spaces with torsion. Europhys Lett 35(4):241–246CrossRefGoogle Scholar
  41. Forger M, Römer H (2004) Currents and the energy-momentum tensor in classical field theory: a fresh look at an old problem. Ann Phys 309:306–389MathSciNetzbMATHCrossRefGoogle Scholar
  42. Futhazar G, Le Marrec L, Rakotomanana-Ravelonarivo L (2014) Covariant gradient continua applied to wave propagation within defective material. Arch Appl Mech 84(9–11):1339–1356zbMATHCrossRefGoogle Scholar
  43. Garcia De Andrade LC (2004) Non-Riemannian geometry of vortex acoustics. Phys Rev D 70:064004-1/064004-5Google Scholar
  44. Garcia De Andrade LC (2005) On the necessity of non-Riemannian acoustic spacetime in fluids with vorticity. Phys Lett A 346:327–329Google Scholar
  45. Goenner HFM (1984) A variational principle for Newton–Cartan theory. Gen Relativ Gravit 16(6):513–526MathSciNetzbMATHCrossRefGoogle Scholar
  46. Gonseth F (1926) Les fondements des mathématiqes: De la géométrie d’Euclide à la relativité générale et à l’intuitionisme Ed. Albert Blanchard, ParisGoogle Scholar
  47. Hammond RT (1990) Second order equations and quadratic Lagrangians. J Math Phys 31:2221–2224MathSciNetzbMATHCrossRefGoogle Scholar
  48. Hammond RT (2002) Torsion gravity. Rep Prog Phys 65:599–649MathSciNetCrossRefGoogle Scholar
  49. Havas P (1964) Four-dimensional formulations of Newtonian mechanics and their relation to the special and the general theory of relativity. Rev Mod Phys 36:938–965MathSciNetzbMATHCrossRefGoogle Scholar
  50. Hayashi K, Shirafuji T (1979) New general relativity. Phys Rev D 19:3524–3553MathSciNetzbMATHCrossRefGoogle Scholar
  51. Hehl FW (1971) Dow does one measure torsion of space-time? Phys Lett 36A(3):225–226MathSciNetCrossRefGoogle Scholar
  52. Hehl FW (1985) On the kinematics of the torsion of spacetime. Found Phys 15(4):451–471MathSciNetCrossRefGoogle Scholar
  53. Hehl FW, Kerlick GD (1976/1978) Metric-affine variational principles in general relativity. I. Riemannian spacetime. Gen Relativ Gravit 9(8):691–710MathSciNetzbMATHCrossRefGoogle Scholar
  54. Hehl FW, von der Heyde P (1973) Spin and the structure of spacetime. Ann Inst Henri Poincaré Sect A 19(2):179–196Google Scholar
  55. Hehl FW, von der Heyde P, Kerlick GD (1974) General relativity with spin and torsion and its deviation from Einstein’s theory. Phys Rev D 16(4):1066–1069MathSciNetCrossRefGoogle Scholar
  56. Hehl FW, von der Heyde P, Kerlick GD, Nester JM (1976) General relativity with spin and torsion: foundations and prospects. Rev Mod Phys 48(3):393–416MathSciNetzbMATHCrossRefGoogle Scholar
  57. Hehl FW, McCrea JD, Mielke EW, Ne’eman Y (1995) Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys Rep 258:1–173MathSciNetCrossRefGoogle Scholar
  58. Hehl FW, Obukhov YN, Puetzfield D (2013) On Poincaré gauge theory of gravity, its equation of motions, and gravity Probe B. Phys Lett A 377:1775–1781MathSciNetzbMATHCrossRefGoogle Scholar
  59. Hojman S (1976/1978) Lagrangian theory of the motion of spinning particles in torsion gravitational theories. Phys Rev D 18(8):2741–2744MathSciNetCrossRefGoogle Scholar
  60. Kadianakis ND (1996) The kinematics of continua and the concept of connection on classical spacetime. Int J Eng Sci 34(3):289–298MathSciNetzbMATHCrossRefGoogle Scholar
  61. Katanaev MO, Volovich IV (1992) Theory of defects in solids and three-dimensional gravity. Ann Phys 216:1–28MathSciNetzbMATHCrossRefGoogle Scholar
  62. Kibble TWB (1961) Lorentz invariance and gravitational field. J Math Phys 3(2):212–221Google Scholar
  63. Kijowski J, Magli G (1992) Relativistic elastomechanics as a Lagrangian field theory. J Geom Phys 9:207–223MathSciNetzbMATHCrossRefGoogle Scholar
  64. Kleinert H (1987) Gravity as a theory of defects in a crystal with only second gradient elasticity. Ann Phys 499(2):117–119CrossRefGoogle Scholar
  65. Kleinert H (1999) Universality principle for orbital angular momentum and spin in gravity with torsion. Gen Relativ Gravit 32(7):1271–1280MathSciNetzbMATHCrossRefGoogle Scholar
  66. Kleinert H (2000) Nonholonomic mapping principle for classical and quantum mechanics in spaces with curvature and torsion. Gen Relativ Gravit 32(5):769–839MathSciNetzbMATHCrossRefGoogle Scholar
  67. Kleinert H (2008) Multivalued fields: in condensed matter, electromagnetism, and gravitation. World Scientific, SingaporeGoogle Scholar
  68. Kleman M, Friedel J (2008) Disclinations, dislocations, and continuous defects: a reappraisal. Rev Mod Phys 80:61–115MathSciNetzbMATHCrossRefGoogle Scholar
  69. Knox E (2013) Effective spacetime geometry. Stud Hist Phil Sci B 44(3):346–356MathSciNetzbMATHCrossRefGoogle Scholar
  70. Kobelev V On the Lagrangian and instability of medium with defects. Meccanica. https://doi.org/10.1007/s11012-011-9480-7
  71. Koivisto T (2011) New variational principles as alternatives to the Palatini method. Phys Rev D 83:101501/4Google Scholar
  72. Krause J (1976) Christoffel symbols and inertia in flat spacetime theory. Int J Theor Phys 15(11):801–807MathSciNetCrossRefGoogle Scholar
  73. Kroener E (1981) Continuum theory of defects. In: Balian et al (ed) Physique des défauts. Les Houches 28 July–29 August. North-Holland, Amsterdam, pp 219–315Google Scholar
  74. Lazar M (2002) An elastoplastic theory of dislocations as a physical field with torsion. J Phys A: Math Gen 35:1983–2004Google Scholar
  75. Lazar M, Anastassiadis C (2008) The gauge theory of dislocations: conservation and balance laws. Philos Mag 88(11):1673–1699CrossRefGoogle Scholar
  76. Le KC, Stumpf H (1996) On the determination of the crystal reference in nonlinear continuum theory of dislocations. Proc R Soc Lond A 452:359–37zbMATHCrossRefGoogle Scholar
  77. Leclerc M (2005) Mathisson-Papapetrou equations in metric and gauge theories of gravity in a Lagrangian formulation. Classical Quantum Gravitation 22:3203–3221MathSciNetzbMATHCrossRefGoogle Scholar
  78. Lehmkuhl D (2011) Mass-energy-momentum in general relativity. Only there because of spacetime? Br J Philos Sci 62(3):453–488Google Scholar
  79. Li B, Sotiriou TP, Barrow JD (2011) f(T) gravity and local Lorentz invariance. Phys Rev D 83:064035/1-pp 064035/5Google Scholar
  80. Lompay RR (2014) On the energy-momentum and spin tensors in the Riemann–Cartan space. Gen Relativ Gravit 46(1692):1–123Google Scholar
  81. Lovelock D (1971) The Einstein tensor and its generalizations. J Math Phys 12:498–501MathSciNetzbMATHCrossRefGoogle Scholar
  82. Lovelock D, Rund H (1975) Tensors, differential forms, and variational principles, chap 8. Wiley, New YorkGoogle Scholar
  83. Maier R (2014) Static vacuum solutions in non-Riemannian gravity. Gen Relativ Gravit 46(1830):1–15Google Scholar
  84. Maluf JW, da Rocha-Neto JF, Toríbio TML, Castello-Branco KH (2002) Energy and angular momentum of gravitational field in the tele parallel geometry. Phys Rev D 65:124001/1 - 12Google Scholar
  85. Malyshev C (2000) The T(3)-gauge model, the Einstein-like gauge equation, and Volterra dislocations with modified asymptotics. Ann Phys 286:249–277MathSciNetzbMATHCrossRefGoogle Scholar
  86. Manoff S (1999) Lagrangian theory of tensor fields over spaces with contra variant and covariant affine connections and metrics and its application to Einstein’s theory of gravitation in \(\overline {V}_4\) spaces. Acta Appl Math 55:51–125Google Scholar
  87. Manoff S (2001b) Deviation operator and deviation equations over spaces with affine connections and metrics. J Geom Phys 39:337–350MathSciNetzbMATHCrossRefGoogle Scholar
  88. Mao Y, Tegmark M, Guth AH, Cabi S (2007) Constraining torsion with Gravity Probe B. Phys Rev D 76:104029/1-26Google Scholar
  89. Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Prentice-Hall, Englewood CliffsGoogle Scholar
  90. Mathisson M (2010) New mechanics of material system. In: General relativity and gravitation, vol 42, pp 1011–1048/Translated by A Ehlers from the Original Paper: Neue mechanik materieller Systeme, Acta Physica Polonica 6, 1937, pp 163–200Google Scholar
  91. Maugin GA (1978) Exact relativistic theory of wave propagation in prestressed nonlinear elastic solids. Ann Inst Henri Poincaré Sect A 28(2):155–185Google Scholar
  92. Maugin GA (1993) Material inhomogeneities in elasticity. Chapman and Hall, LondonzbMATHCrossRefGoogle Scholar
  93. McKellar RJ (1981) The uniqueness of gravity as a Poincaré or Lorentz gauge theory. J Math Phys 22 (12):2934–2942MathSciNetzbMATHCrossRefGoogle Scholar
  94. Minazzoli O, Karko T (2012) New derivation of the Lagrangian of a perfect fluid with a barotropic equation of state. Phys Rev D 86:087502/1-4Google Scholar
  95. Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78MathSciNetzbMATHCrossRefGoogle Scholar
  96. Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1:417–438CrossRefGoogle Scholar
  97. Nakahara (1996) Geometry, topology, and physics. In: Brower D (ed) Graduate student series in physics. Institute of Physics Publishing, BristolGoogle Scholar
  98. Obukhov YN, Puetzfeld D (2014) Conservation laws in gravity: a unified framework. Phys Rev D 90(02004):1–10Google Scholar
  99. Obukhov YN, Ponomariev VN, Zhytnikov VV (1989) Quadratic Poincaré gauge theory of gravity: a comparison with the general relativity theory. Gen Relativ Gravit 21(11):1107–1142Google Scholar
  100. Padmanabhan T (2003) Cosmological constant-the weight of vacuum. Phys Rep 380:235–320Google Scholar
  101. Papapetrou A (1951) Spinning test-particles in general relativity I. Proc R Soc Lond A 209:248–258MathSciNetzbMATHCrossRefGoogle Scholar
  102. Petrov AN, Lompay RR (2013) Covariantized Noether identities and conservation laws for perturbations in metric theories of gravity. Gen Relativ Gravit 45:545–579zbMATHCrossRefGoogle Scholar
  103. Pettey D (1971) One-one-mappings onto locally connected generalized continua. Pac J Math 50(2):573–582MathSciNetzbMATHCrossRefGoogle Scholar
  104. Polizzotto C (2013a) A second strain gradient elasticity theory with second velocity gradient inertia- Part I: constitutive equations and quasi-static behavior. Int J Solids Struct 50:3749–3765CrossRefGoogle Scholar
  105. Polizzotto C (2013b) A second strain gradient elasticity theory with second velocity gradient inertia- Part I: dynamic quasi-static behavior. Int J Solids Struct 50:37–3777Google Scholar
  106. Pons JM (2011) Noether symmetries, energy-momentum tensors, and conformal invariance in classical field theory. J Math Phys 52:012904-1/21MathSciNetzbMATHCrossRefGoogle Scholar
  107. Poplawski NJ (2009) A variational formulation of relativistic hydrodynamics. Phys Lett A 373:2620–2621MathSciNetzbMATHCrossRefGoogle Scholar
  108. Poplawski NJ (2010) Torsion as electromagnetism and spin. Int J Theor Phys 49(7):1481–1488MathSciNetzbMATHCrossRefGoogle Scholar
  109. Prasanna AR (1975a) Maxwell’s equations in Riemann–Cartan space U 4. Phys Lett A 54(1):17–18MathSciNetCrossRefGoogle Scholar
  110. Puetzfeld D, Obukhov YN (2008) Probing non-Riemannian spacetime geometry. Phys Lett A 372:6711–6716MathSciNetzbMATHCrossRefGoogle Scholar
  111. Puetzfeld D, Obukhov YN (2013a) Covariant equations of motion for test bodies in gravitational theories with general nonminimal coupling. Phys Lett D 87:044045/1–7Google Scholar
  112. Puetzfeld D, Obukhov YN (2013b) Equations of motion in gravity theories with nonminimal coupling: a loophole to detect torsion macroscopically. Phys Lett D 88:064025/1–9Google Scholar
  113. Rakotomanana RL (1997) Contribution à la modélisation géométrique et thermodynamique d’une classe de milieux faiblement continus. Arch Ration Mech Anal 141:199–236MathSciNetzbMATHCrossRefGoogle Scholar
  114. Rakotomanana RL (2003) A geometric approach to thermomechanics of dissipating continua. Progress in Mathematical Physics Series. Birkhaüser, BostonGoogle Scholar
  115. Rakotomanana RL (2005) Some class of SG continuum models to connect various length scales in plastic deformation. In: Steinmann P, Maugin GA (ed) Mechanics of material forces, chap 32. Springer, BerlinGoogle Scholar
  116. Rakotomanana RL (2009) Élements de dynamiques des structures et solides déformables. Presses Polytechniques et Universitaires Romandes, LausanneGoogle Scholar
  117. Ramaniraka NA, Rakotomanana LR (2000) Models of continuum with microcrack distribution. Math Mech Solids 5:301–336MathSciNetzbMATHCrossRefGoogle Scholar
  118. Rosen G (1972) Galilean invariance and the general covariance of nonrelativistic laws. Am J Phys 40:683–687CrossRefGoogle Scholar
  119. Ruggiero ML, Tartaglia A (2003) Einstein–Cartan as theory of defects in spacetime. Am J Phys 71(12):1303–1313Google Scholar
  120. Ryder L (2009) Introduction to general relativity. Cambridge University Press, New YorkGoogle Scholar
  121. Ryskin G (1985) Misconception which led to the “material frame-indifference” controversy. Phys Rev A 32(2):1239–1240CrossRefGoogle Scholar
  122. Saa A (1995) Volume-forms and minimal action principles in affine manifolds. J Geom Phys 15:102–108MathSciNetzbMATHCrossRefGoogle Scholar
  123. Schutz BF (1970) Perfect fluids in general relativity: velocity potentials and a variational principle. Phys Rev D 2(12):2762–2773MathSciNetzbMATHCrossRefGoogle Scholar
  124. Sciama DW (1964) The physical structure of general relativity. In: Reviews of modern physics, Contributed papers for relativity, nuclear physics, and post deadline papers, January, pp 463–469CrossRefGoogle Scholar
  125. Shapiro IL (2002) Physical aspects of spacetime torsion. Phys Rep 357:113–213MathSciNetzbMATHCrossRefGoogle Scholar
  126. Shen W, Moritz H (1996) On the separation of gravitation and inertia and the determination of the relativistic gravity field in the case of free motion. J Geod 70:633–644zbMATHCrossRefGoogle Scholar
  127. Smalley LL, Krisch JP (1992) Minimal coupling of electromagnetic fields in Riemann–Cartan space-times for perfect fluids with spin density. J Math Phys 33(3):1073–1081MathSciNetCrossRefGoogle Scholar
  128. Söderholm L (1970) A principle of objectivity for relativistic continuum mechanics. Arch Ration Mech Anal 39(2):89–107MathSciNetzbMATHCrossRefGoogle Scholar
  129. Sotiriou TP (2008) The viability of theories with matter coupled to the Ricci scalar. Phys Lett B 664:225–228MathSciNetzbMATHCrossRefGoogle Scholar
  130. Sotiriou TP (2009) \(f \left ( R \right )\) gravity, torsion and non-metricity. Classical Quantum Gravitation 26:152001Google Scholar
  131. Sotiriou TP, Faraoni V (2010) \(f \left ( R \right )\) theories of gravity. Rev Mod Phys 82:451–497zbMATHCrossRefGoogle Scholar
  132. Sotiriou TP, Liberati S (2007) Metric-affine \(f \left ( R \right )\) theories of gravity. Ann Phys 322:935–966MathSciNetzbMATHCrossRefGoogle Scholar
  133. Sotiriou TP, Li B, Barrow JD (2011) Generalizations of tele parallel gravity and local Lorentz symmetry. Phys Rev D 83:104030/1-104030/6Google Scholar
  134. Svendsen B, Betram A (1999) On frame-indifference and form-invariance in constitutive theory. Acta Mech 132:195–207MathSciNetCrossRefGoogle Scholar
  135. Tamanini N (2012) Variational approach to gravitational theories with two independent connections. Phys Rev D 86:024004/1-9Google Scholar
  136. Taub AH (1954) General relativistic variational principle for perfect fluids. Phys Rev 94(6):1468–1470MathSciNetCrossRefGoogle Scholar
  137. Terrier A, Miyagaki J, Fujie H, Hayashi K, Rakotomanana L (2005) Delay of intracortical bone remodelling following a stress change: a theoretical and experimental study. Clin Biomech 20(9):998–1006CrossRefGoogle Scholar
  138. Truesdell C, Noll W (1991) The non-linear field theories of mechanics, 2nd edn. Springer, BerlinzbMATHGoogle Scholar
  139. Utiyama R (1956) Invariant theoretical interpretation of interaction. Phys Rev 101:1597–1607MathSciNetzbMATHCrossRefGoogle Scholar
  140. Verçyn A (1990) Metric-torsion gauge theory of continuum line defects. Int J Theor Phys 29(1):7–21MathSciNetCrossRefGoogle Scholar
  141. Vitagliano V, Sotiriou TP, Liberati S (2011) The dynamics of metric-affine gravity. Ann Phys 326:1259–1273MathSciNetzbMATHCrossRefGoogle Scholar
  142. Wang CC (1967) Geometric structure of simple bodies, or mathematical foundation for the theory of continuous distributions of dislocations. Arch Ration Mech Anal 27:33–94MathSciNetzbMATHCrossRefGoogle Scholar
  143. Weyl H (1918) Gravitation and electricity. Sitzungsber Preuss Akad Berlin 465:24–37Google Scholar
  144. Wigner E (1939) On unitary representations of the inhomogeneous Lorentz group. Ann Math 40(1):149–204MathSciNetzbMATHCrossRefGoogle Scholar
  145. Williams G (1973) A discussion of causality and the Lorentz group. Int J Theor Phys 7(6):415–421MathSciNetCrossRefGoogle Scholar
  146. Yang CN, Mills RL (1954) Conservation of isotopic spin and isotopic gauge invariance. Phys Rev 96:191–201MathSciNetzbMATHCrossRefGoogle Scholar
  147. Yasskin PB, Stoeger WR (1980) Propagation equations for test bodies with spin and rotation in theories of gravity with torsion. Phys Rev D 21(8):2081–2093MathSciNetCrossRefGoogle Scholar
  148. Zeeman EC (1964) Causality implies the Lorentz group. J Math Phys 5(4):490–493MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lalaonirina R. Rakotomanana
    • 1
  1. 1.Institut de Recherche MathématiqueUniversité de RennesRennes CXFrance

Personalised recommendations