Advertisement

Dataflow Modeling for Reconfigurable Signal Processing Systems

  • Karol Desnos
  • Francesca Palumbo
Chapter

Abstract

Nowadays, adaptive signal processing systems have become a reality. Their development has been mainly driven by the need of satisfying diverging constraints and changeable user needs, like resolution and throughput versus energy consumption. System runtime tuning, based on constraints/conditions variations, can be effectively achieved by adopting reconfigurable computing infrastructures. These latter could be implemented either at the hardware or at the software level, but in any case their management and subsequent implementation is not trivial. In this chapter we present how dataflow models properties, as predictability and analyzability, can ease the development of reconfigurable signal processing systems, leading designers from modelling to physical system deployment.

Notes

Acknowledgements

This work was partially supported by the CERBERO (Cross-layer modEl-based fRamework for multi-oBjective dEsign of Reconfigurable systems in unceRtain hybRid envirOnments) Horizon 2020 Project, funded by the European Union Commission under Grant 732105.

References

  1. 1.
    Advanced Computer Architecture Group - University of California: Morphosys research project. http://gram.eng.uci.edu/morphosys/
  2. 2.
    Altera: Increasing Design Functionality with Partial and Dynamic Reconfiguration in 28-nm FPGAs (2010)Google Scholar
  3. 3.
    Ansaloni, G., Tanimura, K., Pozzi, L., Dutt, N.: Integrated kernel partitioning and scheduling for coarse-grained reconfigurable arrays. IEEE Trans. on CAD of Integrated Circuits and Systems 31(12), 1803–1816 (2012). http://dx.doi.org/10.1109/TCAD.2012.2209886CrossRefGoogle Scholar
  4. 4.
    Battiti, R., Protasi, M.: Reactive local search for the maximum clique problem 1. Algorithmica 29(4), 610–637 (2001)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Beaumin, C., Sentieys, O., Casseau, E., Carer, A.: A coarse-grain reconfigurable hardware architecture for rvc-cal-based design. In: Design and Architectures for Signal and Image Processing (DASIP), 2010 Conference on, pp. 152–159 (2010). https://doi.org/10.1109/DASIP.2010.5706259Google Scholar
  6. 6.
    Bebelis, V., Fradet, P., Girault, A., Lavigueur, B.: Bpdf: A statically analyzable dataflow model with integer and boolean parameters. In: Proceedings of the Eleventh ACM International Conference on Embedded Software, p. 3. IEEE Press (2013)Google Scholar
  7. 7.
    Bezati, E., Mattavelli, M., Janneck, J.: High-Level Synthesis of Dataflow Programs for Signal Processing Systems. In: 8th International Symposium on Image and Signal Processing and Analysis (ISPA 2013) (2013)Google Scholar
  8. 8.
    Bhattacharya, B., Bhattacharyya, S.: Parameterized dataflow modeling for dsp systems. Signal Processing, IEEE Transactions on (2001). https://doi.org/10.1109/78.950795 MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bhattacharya, B., Bhattacharyya, S.S.: Quasi-static scheduling of reconfigurable dataflow graphs for dsp systems. In: Proceedings 11th International Workshop on Rapid System Prototyping. RSP 2000. Shortening the Path from Specification to Prototype (Cat. No.PR00668), pp. 84–89 (2000). https://doi.org/10.1109/IWRSP.2000.855200 Google Scholar
  10. 10.
    Bhattacharyya, S.S., Eker, J., Janneck, J.W., Lucarz, C., Mattavelli, M., Raulet, M.: Overview of the mpeg reconfigurable video coding framework. Journal of Signal Processing Systems 63(2), 251–263 (2011)CrossRefGoogle Scholar
  11. 11.
    Bouakaz, A., Fradet, P., Girault, A.: A survey of parametric dataflow models of computation. ACM Trans. Des. Autom. Electron. Syst. 22(2), 38:1–38:25 (2017). https://doi.org/10.1145/2999539. http://doi.acm.org.rproxy.insa-rennes.fr/10.1145/2999539 Google Scholar
  12. 12.
    Boutellier, J., Lucarz, C., Lafond, S., Gomez, V.M., Mattavelli, M.: Quasi-static scheduling of cal actor networks for reconfigurable video coding. Journal of Signal Processing Systems 63(2), 191–202 (2011). http://dx.doi.org/10.1007/s11265-009-0389-5 CrossRefGoogle Scholar
  13. 13.
    Boutellier, J., Sadhanala, V., Lucarz, C., Brisk, P., Mattavelli, M.: Scheduling of dataflow models within the reconfigurable video coding framework. In: 2008 IEEE Workshop on Signal Processing Systems, pp. 182–187 (2008).  https://doi.org/10.1109/SIPS.2008.4671759
  14. 14.
    Casale-Brunet, S., Bezati, E., Mattavelli, M., Canale, M., Janneck, J.W.: Execution trace graph analysis of dataflow programs: Bounded buffer scheduling and deadlock recovery using model predictive control. In: Design and Architectures for Signal and Image Processing (DASIP), 2014 Conference on, pp. 1–6 (2014).  https://doi.org/10.1109/DASIP.2014.7115623
  15. 15.
    Compton, K., Hauck, S.: Reconfigurable computing: A survey of systems and software. ACM Comput. Surv. 34(2), 171–210 (2002). http://doi.acm.org/10.1145/508352.508353 CrossRefGoogle Scholar
  16. 16.
    Dardaillon, M., Marquet, K., Risset, T., Martin, J., Charles, H.P.: A new compilation flow for software-defined radio applications on heterogeneous mpsocs. ACM Transactions on Architecture and Code Optimization (TACO) 13(2), 19 (2016)CrossRefGoogle Scholar
  17. 17.
    Desnos, K., Pelcat, M., Nezan, J.F., Bhattacharyya, S.S., Aridhi, S.: Pimm: Parameterized and interfaced dataflow meta-model for mpsocs runtime reconfiguration. In: Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIII), 2013 International Conference on, pp. 41–48. IEEE (2013)Google Scholar
  18. 18.
    Dongwook Lee Manhwee Jo, K.H.K.C.: FloRA: Coarse-grained reconfigurable architecture with floating-point operation capability. In: International Conference on Field-Programmable Technology (2009)Google Scholar
  19. 19.
    Edwards, S.A., Townsend, R., Kim, M.A.: Compositional dataflow circuits. In: Proceedings of the 15th ACM-IEEE International Conference on Formal Methods and Models for System Design, MEMOCODE 2017, Vienna, Austria, September 29 - October 02, 2017, pp. 175–184 (2017). http://doi.acm.org/10.1145/3127041.3127055
  20. 20.
    Ersfolk, J., Roquier, G., Jokhio, F., Lilius, J., Mattavelli, M.: Scheduling of dynamic dataflow programs with model checking. In: Signal Processing Systems (SiPS), 2011 IEEE Workshop on, pp. 37–42. IEEE (2011)Google Scholar
  21. 21.
    Ersfolk, J., Roquier, G., Lilius, J., Mattavelli, M.: Modeling control tokens for composition of cal actors. In: Design and Architectures for Signal and Image Processing (DASIP), 2013 Conference on, pp. 71–78 (2013)Google Scholar
  22. 22.
    Fradet, P., Girault, A., Poplavko, P.: Spdf: A schedulable parametric data-flow moc. In: 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 769–774. IEEE (2012)Google Scholar
  23. 23.
    Galanis, M.D., Dimitroulakos, G., Tragoudas, S., Goutis, C.E.: Speedups in embedded systems with a high-performance coprocessor datapath. ACM Trans. Design Autom. Electr. Syst. 12(3), 35:1–35:22 (2007). http://doi.acm.org/10.1145/1255456.1255472 CrossRefGoogle Scholar
  24. 24.
    Gorin, J., Wipliez, M., Prêteux, F., Raulet, M.: Llvm-based and scalable mpeg-rvc decoder. Journal of Real-Time Image Processing 6(1), 59–70 (2011)CrossRefGoogle Scholar
  25. 25.
    Goubier, T., Sirdey, R., Louise, S., David, V.: σc: A programming model and language for embedded manycores. In: International Conference on Algorithms and Architectures for Parallel Processing, pp. 385–394. Springer (2011)Google Scholar
  26. 26.
    Ha, S., Oh, H.: Decidable signal processing dataflow graphs. In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn. Springer (2018)Google Scholar
  27. 27.
    Hartenstein, R.W.: Coarse grain reconfigurable architecture (embedded tutorial). In: Proceedings of ASP-DAC 2001, Asia and South Pacific Design Automation Conference 2001, January 30-February 2, 2001, Yokohama, Japan, pp. 564–570 (2001). http://doi.acm.org/10.1145/370155.370535
  28. 28.
    Heulot, J., Boutellier, J., Pelcat, M., Nezan, J.F., Aridhi, S.: Applying the adaptive hybrid flow-shop scheduling method to schedule a 3gpp lte physical layer algorithm onto many-core digital signal processors. In: 2013 NASA/ESA Conference on Adaptive Hardware and Systems (AHS-2013), pp. 123–129 (2013).  https://doi.org/10.1109/AHS.2013.6604235
  29. 29.
    Heulot, J., Pelcat, M., Desnos, K., Nezan, J.F., Aridhi, S.: Spider: A synchronous parameterized and interfaced dataflow-based rtos for multicore dsps. In: 2014 6th European Embedded Design in Education and Research Conference (EDERC), pp. 167–171 (2014).  https://doi.org/10.1109/EDERC.2014.6924381
  30. 30.
    Huang, Y., Ienne, P., Temam, O., Chen, Y., Wu, C.: Elastic cgras. In: Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA ’13, pp. 171–180. ACM, New York, NY, USA (2013). http://doi.acm.org/10.1145/2435264.2435296
  31. 31.
    Huang, Z., Malik, S.: Managing dynamic reconfiguration overhead in systems-on-a-chip design using reconfigurable datapaths and optimized interconnection networks. In: Proceedings of the Conference on Design, Automation and Test in Europe, DATE ’01, pp. 735–. IEEE Press, Piscataway, NJ, USA (2001). http://dl.acm.org/citation.cfm?id=367072.367934
  32. 32.
    Kee, H., Shen, C.C., Bhattacharyya, S.S., Wong, I., Rao, Y., Kornerup, J.: Mapping parameterized cyclo-static dataflow graphs onto configurable hardware. Journal of Signal Processing Systems (2012)Google Scholar
  33. 33.
    Keinert, J., Deprettere, E.F.: Multidimensional dataflow graphs. In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, second edn. Springer (2013)Google Scholar
  34. 34.
    Kenneth Pocek Russell Tessier, A.D.: Birth and adolescence of reconfigurable computing: a survey of the first 20 years of field-programmable custom computing machines. Field-Programmable Custom Computing Machines, Annual IEEE Symposium on 00(undefined), 1–17 (2013). http://doi.ieeecomputersociety.org/10.1109/FPGA.2013.6882273
  35. 35.
    Ko, M.Y., Zissulescu, C., Puthenpurayil, S., Bhattacharyya, S.S., Kienhuis, B., Deprettere, E.F.: Parameterized looped schedules for compact representation of execution sequences in dsp hardware and software implementation. IEEE Transactions on Signal Processing 55(6), 3126–3138 (2007)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Lattner, C.: Llvm and clang: Advancing compiler technology. Proc. of FOSDEM (2011)Google Scholar
  37. 37.
    Lee, E.A., Ha, S.: Scheduling strategies for multiprocessor real-time dsp. In: Global Telecommunications Conference and Exhibition’Communications Technology for the 1990s and Beyond’(GLOBECOM), 1989. IEEE, pp. 1279–1283. IEEE (1989)Google Scholar
  38. 38.
    Lee, E.A., Parks, T.M.: Dataflow process networks. Proceedings of the IEEE 83(5), 773–801 (1995)CrossRefGoogle Scholar
  39. 39.
    Leupers, R., Aguilar, M.A., Castrillon, J., Sheng, W.: Software compilation techniques for heterogeneous embedded multi-core systems. In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn. Springer (2018)Google Scholar
  40. 40.
    Lin, S., Wang, L.H., Vosoughi, A., Cavallaro, J.R., Juntti, M., Boutellier, J., Silvén, O., Valkama, M., Bhattacharyya, S.S.: Parameterized sets of dataflow modes and their application to implementation of cognitive radio systems. Journal of Signal Processing Systems 80(1), 3–18 (2015). http://dx.doi.org/10.1007/s11265-014-0938-4 CrossRefGoogle Scholar
  41. 41.
    Liu, L., Wang, D., Zhu, M., Wang, Y., Yin, S., Cao, P., Yang, J., Wei, S.: An energy-efficient coarse-grained reconfigurable processing unit for multiple-standard video decoding. IEEE Trans. Multimedia 17(10), 1706–1720 (2015)CrossRefGoogle Scholar
  42. 42.
    Martin, G., Smith, G.: High-level synthesis: Past, present, and future. IEEE Design & Test of Computers 26(4), 18–25 (2009). http://dx.doi.org/10.1109/MDT.2009.83CrossRefGoogle Scholar
  43. 43.
    Moreano, N., Araujo, G., Huang, Z., Malik, S.: Datapath merging and interconnection sharing for reconfigurable architectures. In: System Synthesis, 2002. 15th International Symposium on, pp. 38–43 (2002)Google Scholar
  44. 44.
    Neuendorffer, S., Lee, E.: Hierarchical reconfiguration of dataflow models. In: MEMOCODE (2004).  https://doi.org/10.1109/MEMCOD.2004.1459852
  45. 45.
    Niedermeier, A., Kuper, J., Smit, G.: Dataflow-based reconfigurable architecture for streaming applications. In: System on Chip (SoC), 2012 International Symposium on, pp. 1–4 (2012).  https://doi.org/10.1109/ISSoC.2012.6376365
  46. 46.
    Palumbo, F., Carta, N., Pani, D., Meloni, P., Raffo, L.: The multi-dataflow composer tool: generation of on-the-fly reconfigurable platforms. Journal of real-time image processing 9(1), 233–249 (2014)CrossRefGoogle Scholar
  47. 47.
    Palumbo, F., Carta, N., Pani, D., Meloni, P., Raffo, L.: The multi-dataflow composer tool: generation of on-the-fly reconfigurable platforms. Journal of real-time image processing 9(1), 233–249 (2014)CrossRefGoogle Scholar
  48. 48.
    Palumbo, F., Sau, C., Evangelista, D., Meloni, P., Pelcat, M., Raffo, L.: Runtime energy versus quality tuning in motion compensation filters for hevc. IFAC-PapersOnLine 49(25), 145–152 (2016)CrossRefGoogle Scholar
  49. 49.
    Palumbo, F., Sau, C., Fanni, T., Meloni, P., Raffo, L.: Dataflow-based design of coarse-grained reconfigurable platforms. In: Signal Processing Systems (SiPS), 2016 IEEE International Workshop on, pp. 127–129. IEEE (2016)Google Scholar
  50. 50.
    Pelcat, M., Aridhi, S., Piat, J., Nezan, J.F.: Physical layer multi-core prototyping: a dataflow-based approach for LTE eNodeB, vol. 171. Springer Science & Business Media (2012)Google Scholar
  51. 51.
    Pelcat, M., Desnos, K., Heulot, J., Guy, C., Nezan, J.F., Aridhi, S.: Preesm: A dataflow-based rapid prototyping framework for simplifying multicore dsp programming. In: Education and Research Conference (EDERC), 2014 6th European Embedded Design in, pp. 36–40 (2014).  https://doi.org/10.1109/EDERC.2014.6924354
  52. 52.
    Piat, J., Bhattacharyya, S., Raulet, M.: Interface-based hierarchy for synchronous data-flow graphs. In: SiPS Proceedings (2009).  https://doi.org/10.1109/SIPS.2009.5336240
  53. 53.
    Piat, J., Crenne, J.: Modeling dynamic partial reconfiguration in the dataflow paradigm. In: 2014 IEEE Workshop on Signal Processing Systems (SiPS), pp. 1–6. IEEE (2014)Google Scholar
  54. 54.
    Plishker, W., Sane, N., Bhattacharyya, S.S.: Mode grouping for more effective generalized scheduling of dynamic dataflow applications. In: Proceedings of the 46th Annual Design Automation Conference, pp. 923–926. ACM (2009)Google Scholar
  55. 55.
    Ren, R., Juarez, E., Sanz, C., Raulet, M., Pescador, F.: Energy-aware decoder management: a case study on rvc-cal specification based on just-in-time adaptive decoder engine. IEEE Transactions on Consumer Electronics 60(3), 499–507 (2014). https://doi.org/10.1109/TCE.2014.6937336 CrossRefGoogle Scholar
  56. 56.
    Roquier, G., Bezati, E., Thavot, R., Mattavelli, M.: Hardware/software co-design of dataflow programs for reconfigurable hardware and multi-core platforms. In: 2011 Conference on Design and Architectures for Signal and Image Processing, DASIP 2011, Tampere, Finland, November 2–4, 2011, pp. 171–177 (2011). http://dx.doi.org/10.1109/DASIP.2011.6136875 Google Scholar
  57. 57.
    Sau, C., Fanni, L., Meloni, P., Raffo, L., Palumbo, F.: Reconfigurable coprocessors synthesis in the mpeg-rvc domain. In: ReConFigurable Computing and FPGAs (ReConFig), 2015 International Conference on, pp. 1–8. IEEE (2015)Google Scholar
  58. 58.
    Sau, C., Meloni, P., Raffo, L., Palumbo, F., Bezati, E., Casale-Brunet, S., Mattavelli, M.: Automated design flow for multi-functional dataflow-based platforms. Journal of Signal Processing Systems 85(1), 143–165 (2016)CrossRefGoogle Scholar
  59. 59.
    Sérot, J., Berry, F.: High-level dataflow programming for reconfigurable computing. In: Proceedings of the 2014 International Symposium on Computer Architecture and High Performance Computing Workshop, SBAC-PADW ’14, pp. 72–77. IEEE Computer Society, Washington, DC, USA (2014). http://dx.doi.org/10.1109/SBAC-PADW.2014.18 Google Scholar
  60. 60.
    Souza, C.C.d., Lima, A.M., Araujo, G., Moreano, N.B.: The datapath merging problem in reconfigurable systems: Complexity, dual bounds and heuristic evaluation. J. Exp. Algorithmics 10 (2005). http://doi.acm.org/10.1145/1064546.1180613 CrossRefGoogle Scholar
  61. 61.
    Swanson, S., Schwerin, A., Mercaldi, M., Petersen, A., Putnam, A., Michelson, K., Oskin, M., Eggers, S.J.: The wavescalar architecture. ACM Trans. Comput. Syst. 25(2), 4:1–4:54 (2007). http://doi.acm.org/10.1145/1233307.1233308 CrossRefGoogle Scholar
  62. 62.
    Tessier, R., Burleson, W.: Reconfigurable computing for digital signal processing: A survey. VLSI Signal Processing 28(1–2), 7–27 (2001). http://dx.doi.org/10.1023/A:1008155020711 CrossRefGoogle Scholar
  63. 63.
    Tessier, R., Pocek, K.L., DeHon, A.: Reconfigurable computing architectures. Proceedings of the IEEE 103(3), 332–354 (2015). http://dx.doi.org/10.1109/JPROC.2014.2386883CrossRefGoogle Scholar
  64. 64.
    Theelen, B.D., Deprettere, E.F., Bhattacharyya, S.S.: Dynamic dataflow graphs. In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn. Springer (2018)Google Scholar
  65. 65.
    Wijtvliet, M., Waeijen, L., Corporaal, H.: Coarse grained reconfigurable architectures in the past 25 years: Overview and classification. In: International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation, SAMOS 2016, Agios Konstantinos, Samos Island, Greece, July 17–21, 2016, pp. 235–244 (2016). http://dx.doi.org/10.1109/SAMOS.2016.7818353Google Scholar
  66. 66.
    Xilinx: Partial Reconfiguration User Guide (2012)Google Scholar
  67. 67.
    Yviquel, H., Casseau, E., Wipliez, M., Gorin, J., Raulet, M.: Classification-based optimization of dynamic dataflow programs. In: Advancing Embedded Systems and Real-Time Communications with Emerging Technologies, pp. 282–301. IGI Global (2014)Google Scholar
  68. 68.
    Yviquel, H., Sanchez, A., Mickaël, R., Casseau, E.: Technical Report: Multicore Runtime for Dynamic Dataflow Video Decoders. Technical report, IETR/INSA Rennes; IRISA, Inria Rennes (2017). https://hal.archives-ouvertes.fr/hal-01503378

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Univ RennesINSA RennesCNRS, IETR - UMR 6164, F-35000 RennesFrance
  2. 2.Universita degli Studi di SassariSassariItaly

Personalised recommendations