Advertisement

Architectures for Stereo Vision

  • Christian Banz
  • Nicolai Behmann
  • Holger Blume
  • Peter Pirsch
Chapter

Abstract

Stereo vision is an elementary problem for many computer vision tasks. It has been widely studied under the following two aspects, increasing the quality of the results and accelerating the computational processes. This chapter provides theoretic background on stereo vision systems and discusses architectures and implementations for real-time applications. In particular, the computationally intensive part, the stereo matching, is discussed using one of the leading algorithms, the semi-global matching (SGM) as an example. For this algorithm two implementations are presented in detail on two of the most relevant platforms for real-time image processing today: Field Programmable Gate Arrays (FPGAs) and Graphics Processing Units (GPUs). Thus, the major differences in designing parallelization techniques for extremely different image processing platforms can be illustrated.

References

  1. 1.
    Ambrosch, K., Kubinger, W.: Accurate hardware-based stereo vision. Computer Vision and Image Understanding, Elsevier 114, 1303–1316 (2010)CrossRefGoogle Scholar
  2. 2.
    Arias-Estrada, M., Xicotencatl, J., Brebner, G., Woods, R.: Multiple stereo matching using an extended architecture. Proc. Field-Programmable Logic and Applications 2147, 203–212 (2001)CrossRefGoogle Scholar
  3. 3.
    Bailey, D.G.: Design for embedded image processing on FPGAs. John Wiley & Sons, Singapore (2011)CrossRefGoogle Scholar
  4. 4.
    Banz, C., Blume, H., Pirsch, P.: Real-time semi-global matching disparity estimation on the GPU. Proc. IEEE Intl. Conf. Computer Vision Workshops pp. 514–521 (2011)Google Scholar
  5. 5.
    Banz, C., Blume, H., Pirsch, P.: Evaluation of penalty functions for SGM cost aggregation. Intl. Archives of Photogrammetry and Remote Sensing (2012)Google Scholar
  6. 6.
    Banz, C., Dolar, C., Cholewa, F., Blume, H.: Instruction set extension for high throughput disparity estimation in stereo image processing. Proc. IEEE Intl. Conf. Architectures and Processors Application-Specific Systems pp. 169–175 (2011)Google Scholar
  7. 7.
    Banz, C., Hesselbarth, S., Flatt, H., Blume, H., Pirsch, P.: Real-time stereo vision system using semi-global matching disparity estimation: Architecture and FPGA-implementation. Proc. IEEE Intl. Conf. Embedded Computer Systems: Architectures, Modeling, and Simulation pp. 93–101 (2010)Google Scholar
  8. 8.
    Banz, C., Hesselbarth, S., Flatt, H., Blume, H., Pirsch, P.: Real-time stereo vision system using semi-global matching disparity estimation: Architecture and FPGA-implementation. Trans. High-Performance Embedded Architectures and Compilers, Springer (2012)Google Scholar
  9. 9.
    Belhumeur, P.N.: A bayesian approach to binocular steropsis. Intl. Journal of Computer Vision 19(3), 237–260 (1996)CrossRefGoogle Scholar
  10. 10.
    Birchfield, S., Tomasi, C.: A pixel dissimilarity measure that is insensitive to image sampling. IEEE Trans. Pattern Analysis and Machine Intelligence 20(4), 401–406 (1998)CrossRefGoogle Scholar
  11. 11.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. Proc. IEEE Intl. Conf. Computer Vision 1, 377–384 (1999)Google Scholar
  12. 12.
    Bradski, G., Kaehler, A.: Learning OpenCV, 1 edn. O’Reilly, Sebastopol (2008)Google Scholar
  13. 13.
    Brunton, A., Chang, S., Roth, G.: Belief propagation on the GPU for stereo vision. Proc. Canadian Conf. Computer and Robot Vision p. 76 (2006)Google Scholar
  14. 14.
    Chang, N., Lin, T.M., Tasi, T.H., Tseng, Y.C., Chang, T.S.: Real-time DSP implementation on local stereo matching. Proc. IEEE Intl. Conf. Multimedia and Expo pp. 2090–2093 (2007)Google Scholar
  15. 15.
    Chang, N., Tasi, T.H., Hsu, B., Chen, Y., Chang, T.S.: Algorithm and architecture of disparity estimation with mini-census adaptive support weight. IEEE Trans. Circuits and Systems for Video Technology 20(6), 792–805 (2010)CrossRefGoogle Scholar
  16. 16.
    Chu, P.P.: RTL hardware design using VHDL: Coding for efficiency, portability, and scalability. Wiley-Interscience, Hoboken and N.J (2006)CrossRefGoogle Scholar
  17. 17.
    Cornells, N., van Gool, L.: Real-time connectivity constrained depth map computation using programmable graphics hardware. Proc. IEEE Conf. Computer Vision and Pattern Recognition 1, 1099–1104 (2005)Google Scholar
  18. 18.
    Darabiha, A., MacLean, W., Rose, J.: Reconfigurable hardware implementation of a phase-correlation stereo algorithm. Machine Vision and Applications, Springer 17, 116–132 (2006)CrossRefGoogle Scholar
  19. 19.
    Diaz, J., Ros, E., Carrillo, R., Prieto, A.: Real-time system for high-image resolution disparity estimation. IEEE Trans. Image Processing 16(1), 280–285 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ernst, I., Hirschmüller, H.: Mutual information based semi-global stereo matching on the GPU. Proc. Intl. Symp. Visual Computing 5358, 228–239 (2008)Google Scholar
  21. 21.
    Ess, A., Leibe, B., Schindler, K., van Gool, L.: A mobile vision system for robust multi-person tracking. Proc. IEEE Conf. Computer Vision and Pattern Recognition pp. 1–8 (2008)Google Scholar
  22. 22.
    Faugeras, O., Viéville, T., Theron, E., Vuillemin, J., Hotz, B., Zhang, Z., Moll, L., Bertin, P., Mathieu, H., Fua, P., Berry, G., Proy, C.: Real-time correlation-based stereo: Algorithm, implementations and applications (1993)Google Scholar
  23. 23.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. Intl. Journal of Computer Vision, Springer 70, 41–54 (2006)Google Scholar
  24. 24.
    Forstmann, S., Kanou, Y., Jun, O., Thuering, S., Schmitt, A.: Real-time stereo by using dynamic programming. Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshop p. 29 (2004)Google Scholar
  25. 25.
    Gehrig, S., Rabe, C.: Real-time semi-global matching on the CPU. Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshop pp. 85–92 (2010)Google Scholar
  26. 26.
    Gehrig, S.K., Eberli, F., Meyer, T.: A real-time low-power stereo vision engine using semi-global matching. Proc. Intl. Conf. Computer Vision Systems 5815, 134–143 (2009)CrossRefGoogle Scholar
  27. 27.
    Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (2012)Google Scholar
  28. 28.
    Georgoulas, C., Andreadis, I.: A real-time fuzzy hardware structure for disparity map computation. Journal of Real-Time Image Processing, Springer 6(4), 257–273 (2011)CrossRefGoogle Scholar
  29. 29.
    Gibson, J., Marques, O.: Stereo depth with a unified architecture GPU. Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshop pp. 1–6 (2008)Google Scholar
  30. 30.
    Gong, M.: Real-time joint disparity and disparity flow estimation on programmable graphics hardware. Computer Vision and Image Understanding, Elsevier 113(1), 90–100 (2009)CrossRefGoogle Scholar
  31. 31.
    Gong, M., Yang, R., Wang, L., Gong Mingwei: A performance study on different cost aggregation approaches used in real-time stereo matching. Intl. Journal of Computer Vision, Springer 75, 283–296 (2007)Google Scholar
  32. 32.
    Gong, M., Yang, Y.H.: Near real-time reliable stereo matching using programmable graphics hardware. Proc. IEEE Conf. Computer Vision and Pattern Recognition 1, 924–931 (2005)Google Scholar
  33. 33.
    Güney, F., Geiger, A.: Displets: Resolving stereo ambiguities using object knowledge. Proc. IEEE Conf. on Computer Vision and Pattern Recognition (2015)Google Scholar
  34. 34.
    Haller, I., Nedevschi, S.: GPU optimization of the SGM stereo algorithm. Proc. IEEE Intl. Conf. Intelligent Computer Communication and Processing pp. 197–202 (2010)Google Scholar
  35. 35.
    Haller, I., Nedevschi, S.: Design of interpolation functions for subpixel-accuracy stereo-vision systems. IEEE Trans. Image Processing 21(2), 889–898 (2012)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Harris: Optimizing parallel reduction in CUDA (2007). Whitepaper included in Nvidia Cuda SDK 4.0Google Scholar
  37. 37.
    Hartley, R.I., Zisserman, A.: Multiple view geometry in computer vision, 2. ed., 7. print. edn. Cambridge Univ. Press, Cambridge (2010)Google Scholar
  38. 38.
    Hennessy, J.L., Patterson, D.A.: Computer architecture: A quantitative approach, 5 edn. Morgan Kaufmann, San Francisco and Calif and Oxford (2011)zbMATHGoogle Scholar
  39. 39.
    Hirschmüller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. Proc. IEEE Conf. Computer Vision and Pattern Recognition 2, 807–814 (2005)Google Scholar
  40. 40.
    Hirschmüller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Analysis and Machine Intelligence 30(2), 328–341 (2008)CrossRefGoogle Scholar
  41. 41.
    Hirschmüller, H., Scharstein, D.: Evaluation of cost functions for stereo matching. Proc. IEEE Conf. Computer Vision and Pattern Recognition pp. 1–8 (2007)Google Scholar
  42. 42.
    Hirschmüller, H., Scharstein, D.: Evaluation of stereo matching costs on images with radiometric differences. IEEE Trans. Pattern Analysis and Machine Intelligence 31(9), 1582–1599 (2009)CrossRefGoogle Scholar
  43. 43.
    Hosni, A., Bleyer, M., Rhemann, C., Gelautz, M., Rother, C.: Real-time local stereo matching using guided image filtering. Proc. IEEE Intl. Conf. Multimedia and Expo pp. 1–6 (2011)Google Scholar
  44. 44.
    Hosseini, F., Fijany, A., Safari, S., Fontaine, J.: Fast implementation of dense stereo vision algorithms on a highly parallel SIMD architecture. Journal of Real-Time Image Processing, Springer pp. 1–15 (2011)Google Scholar
  45. 45.
    Humenberger, M., Zinner, C., Kubinger, W.: Performance evaluation of a census-based stereo matching algorithm on embedded and multi-core hardware. Proc. Intl. Symp. Image and Signal Processing and Analysis pp. 388–393 (2009)Google Scholar
  46. 46.
    Ivanchenko, V., Shen, H., Coughlan, J.: Elevation-based MRF stereo implemented in real-time on a GPU. Workshop Applications of Computer Vision pp. 1–8 (2009)Google Scholar
  47. 47.
    Jiangbo, L., Rogmans, S., Lafruit, G., Catthoor, F.: Real-time stereo correspondence using a truncated separable laplacian kernel approximation on graphics hardware. Proc. IEEE Intl. Conf. Multimedia and Expo pp. 1946–1949 (2007)Google Scholar
  48. 48.
    Jiangbo, L., Zhang, K., Lafruit, G., Catthoor, F.: Real-time stereo matching: a cross-based local approach. Proc. IEEE Intl. Conf. Acoustics, Speech and Signal Processing pp. 733–736 (2009)Google Scholar
  49. 49.
    Jin, S., Cho, J., Pham, X.D., Lee, K.M., Park, S.K., Kim, M., Jeon, J.W.: FPGA design and implementation of a real-time stereo vision system. IEEE Trans. Circuits and Systems for Video Technology 20(1), 15–26 (2010)CrossRefGoogle Scholar
  50. 50.
    Kalarot, R., Morris, J.: Comparison of FPGA and GPU implementations of real-time stereo vision. Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshop pp. 9–15 (2010)Google Scholar
  51. 51.
    Kalarot, R., Morris, J., Gimel’farb, G.: Performance analysis of multi-resolution symmetric dynamic programming stereo on GPU. Proc. Intl. Conf. Image and Vision Computing New Zealand pp. 1–7 (2010)Google Scholar
  52. 52.
    Kanade, T., Yoshida, A., Oda, K., Kano, H., Tanaka, M.: A stereo machine for video-rate dense depth mapping and its new applications. Proc. IEEE Conf. Computer Vision and Pattern Recognition pp. 196–202 (1996)Google Scholar
  53. 53.
    Ke, Z., Jiangbo, L., Qiong, Y., Lafruit, G., Lauwereins, R., van Gool, L.: Real-time and accurate stereo: A scalable approach with bitwise fast voting on CUDA. IEEE Trans. Circuits and Systems for Video Technology 21(7), 867–878 (2011)CrossRefGoogle Scholar
  54. 54.
    Kendall, A., Martirosyan, H., Dasgupta, S., Henry, P., Kennedy, R., Bachrach, A., Bry, A.: End-to-end learning of geometry and context for deep stereo regression. arXiv preprint arXiv:1703.04309 (2017)Google Scholar
  55. 55.
    Kim, J., Kolmogorov, V., Zabih, R.: Visual correspondence using energy minimization and mutual information. Proc. IEEE Intl. Conf. Computer Vision pp. 1033–1040 (2003)Google Scholar
  56. 56.
    Konolige, K.: Small vision systems: Hardware and implementation. Proc. Intl. Symp. Robotic Research (1997)Google Scholar
  57. 57.
    Kung, M., Au, O., Wong, P., Chun, H.L.: Block based parallel motion estimation using programmable graphics hardware. Proc. Intl. Conf. Audio, Language and Image Processing pp. 599–603 (2008)Google Scholar
  58. 58.
    Lee, S.H., Yi, J., Kim, J.S.: Real-time stereo vision on a reconfigurable system. Proc. Intl. Conf. Embedded Computer Systems: Architectures, Modeling, and Simulation Workshops 3553, 299–307 (2005)Google Scholar
  59. 59.
    Liang, C., Cheng, C., Lai, Y., Chen, L., Chen, H.: Hardware-efficient belief propagation. IEEE Trans. Circuits and Systems for Video Technology 21(5), 525–537 (2011)CrossRefGoogle Scholar
  60. 60.
    Liang, W., Miao, L., Minglun, G., Ruigang, Y., Nister, D.: High-quality real-time stereo using adaptive cost aggregation and dynamic programming. Proc. Intl. Symp. 3D Data Processing, Visualization, and Transmission pp. 798–805 (2006)Google Scholar
  61. 61.
    Liang, W., Mingwei, G., Minglun, G., Ruigang, Y.: How far can we go with local optimization in real-time stereo matching. Proc. Intl. Symp. 3D Data Processing, Visualization, and Transmission pp. 129–136 (2006)Google Scholar
  62. 62.
    Liu, J., Xu, Y., Klette, R., Chen, H., Vaudrey, T.: Disparity Map Computation on a Cell Processor (2009)Google Scholar
  63. 63.
    Luo, W., Schwing, A., Urtasun, R.: Efficient deep learning for stereo matching. Proc. IEEE Conf. on Computer Vision and Pattern Recognition (2016)Google Scholar
  64. 64.
    van der Mark, W., Gavrila, D.: Real-time dense stereo for intelligent vehicles. IEEE Trans. Intelligent Transportation Systems 7(1), 38–50 (2006)CrossRefGoogle Scholar
  65. 65.
    Masrani, D., MacLean, W.: A real-time large disparity range stereo-system using FPGAs. Proc. Intl. Conf. Computer Vision Systems p. 13 (2006)Google Scholar
  66. 66.
    Mattoccia, S., Viti, M., Ries, F.: Near real-time fast bilateral stereo on the GPU. Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshop pp. 136–143 (2011)Google Scholar
  67. 67.
    Mayer, N., Ilg, E., Häusser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox, T.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. Proc. IEEE Conf. on Computer Vision and Pattern Recognition (2016)Google Scholar
  68. 68.
    Mei, X., Sun, X., Zhou, M., Jiao, S., Wang, H., Zhang, X.: On building an accurate stereo matching system on graphics hardware. Proc. IEEE Intl. Conf. Computer Vision Workshops pp. 467–474 (2011)Google Scholar
  69. 69.
    Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. Proc. IEEE Conf. on Computer Vision and Pattern Recognition (2015)Google Scholar
  70. 70.
    Menze, M., Heipke, C., Geiger, A.: Joint 3D estimation of vehicles and scene flow. ISPRS Workshop on Image Sequence Analysis (2015)Google Scholar
  71. 71.
    Minglun, G., Ruigang, Y.: Image-gradient-guided real-time stereo on graphics hardware. Proc. Intl Conf. 3D Digital Imaging and Modeling pp. 548–555 (2005)Google Scholar
  72. 72.
    Miyajima, Y., Maruyama, T.: A real-time stereo vision system with FPGA. Proc. Intl. Conf. Field Programmable Logic And Application 2778, 448–457 (2003)CrossRefGoogle Scholar
  73. 73.
    Morris, J., Jawed, K., Gimel’farb, G., Khan, T.: Breaking the ‘Ton’: Achieving 1% depth accuracy from stereo in real time. Proc. Intl. Conf. Image and Vision Computing New Zealand pp. 142–147 (2009)Google Scholar
  74. 74.
    Mühlmann, K., Maier, D., Hesser, J., Manner, R.: Calculating dense disparity maps from color stereo images, an efficient implementation. Intl. Journal of Computer Vision, Springer 47(1–3), 79–88 (2002)Google Scholar
  75. 75.
    Pantilie, C., Nedevschi, S.: SORT-SGM: Subpixel optimized real-time semiglobal matching for intelligent vehicles. IEEE Trans. Vehicular Technology 61(3), 1032–1042 (2012)CrossRefGoogle Scholar
  76. 76.
    Park, S., Jeong, H.: Real-time stereo vision FPGA chip with low error rate. Proc. Intl. Conf. Multimedia and Ubiquitous Engineering pp. 751–756 (2007)Google Scholar
  77. 77.
    Paya Vaya, G., Martin Langerwerf, J., Banz, C., Giesemann, F., Pirsch, P., Blume, H.: VLIW architecture optimization for an efficient computation of stereoscopic video applications. Proc. Intl. Conf. Green Circuits and Systems pp. 457–462 (2010)Google Scholar
  78. 78.
    Paya-Vaya, G., Martin-Langerwerf, J., Pirsch, P.: A multi-shared register file structure for VLIW processors. Journal of Signal Processing Systems, Springer 58(2), 215–231 (2010)CrossRefGoogle Scholar
  79. 79.
    Perez, J., Sanchez, P., Martinez, M.: High memory throughput FPGA architecture for high-definition Belief-Propagation stereo matching. Proc. Intl. Conf. Signals, Circuits and Systems pp. 1–6 (2009)Google Scholar
  80. 80.
    Pirsch, P.: Architectures for digital signal processing. John Wiley & Sons, Inc., Chichester (2008)Google Scholar
  81. 81.
    Pock, T., Schoenemann, T., Graber, G., Bischof, H., Cremers, D.: A convex formulation of continuous multi-label problems. Proc. European Conf. on Computer Vision 5304, 792–805 (2008)Google Scholar
  82. 82.
    Podlozhnyuk, V.: Image Convolution with CUDA (2007). Whitepaper included in Nvidia Cuda SDK 4.0Google Scholar
  83. 83.
    Ranft, B., Schoenwald, T., Kitt, B.: Parallel matching-based estimation - a case study on three different hardware architectures. Proc. IEEE Intelligent Vehicles Symposium pp. 1060–1067 (2011)Google Scholar
  84. 84.
    Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. Proc. IEEE Conf. on Computer Vision and Pattern Recognition (2016)Google Scholar
  85. 85.
    Roy, S., Cox, I.: A maximum-flow formulation of the n-camera stereo correspondence problem. Proc. of Intl. Conf. on Computer Vision (1998)Google Scholar
  86. 86.
    Ruigang, Y., Pollefeys, M.: Multi-resolution real-time stereo on commodity graphics hardware. Proc. IEEE Conf. Computer Vision and Pattern Recognition 1, I–211–I–217 (2003)Google Scholar
  87. 87.
    Ruigang, Y., Welch, G., Bishop, G.: Real-time consensus-based scene reconstruction using commodity graphics hardware. Proc. Pacific Conf. Computer Graphics and Applications pp. 225–234 (2002)Google Scholar
  88. 88.
    Sabihuddin, S., Islam, J., MacLean, W.: Dynamic programming approach to high frame-rate stereo correspondence: A pipelined architecture implemented on a field programmable gate array. Proc. Canadian Conf. Electrical and Computer Engineering pp. 001,461–001,466 (2008)Google Scholar
  89. 89.
    Safari, S., Fijany, A., Diotalevi, F., Hosseini, F.: Highly parallel and fast implementation of stereo vision algorithms on MIMD many-core Tilera architecture. Proc. IEEE Aerospace Conf. pp. 1–11 (2012)Google Scholar
  90. 90.
    Scharstein, D., Szeliski, R.: The Middlebury Stereo Pages. http://vision.middlebury.edu/stereo/
  91. 91.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Intl. Journal of Computer Vision, Springer 47(1), 7–42 (2002)Google Scholar
  92. 92.
    Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. Proc. IEEE Conf. Computer Vision and Pattern Recognition 1, I–195–I–202 (2003)Google Scholar
  93. 93.
    Szeliski, R.: Computer vision: Algorithms and applications. Springer, London and New York (2011)CrossRefGoogle Scholar
  94. 94.
    Szeliski, R., Scharstein, D.: Sampling the disparity space image. IEEE Trans. Pattern Analysis and Machine Intelligence 26(3), 419–425 (2004)CrossRefGoogle Scholar
  95. 95.
    Tomasi, M., Vanegas, M., Barranco, F., Daz, J., Ros, E.: Massive parallel-hardware architecture for multiscale stereo, optical flow and image-structure computation. IEEE Trans. Circuits and Systems for Video Technology 22(2), 282–294 (2012)CrossRefGoogle Scholar
  96. 96.
    Tombari, F., Mattoccia, S., Di Stefano, L., Addimanda, E.: Classification and evaluation of cost aggregation methods for stereo correspondence. Proc. IEEE Conf. Computer Vision and Pattern Recognition pp. 1–8 (2008)Google Scholar
  97. 97.
    Tseng, Y.C., Chang, T.S.: Architecture design of belief propagation for real-time disparity estimation. IEEE Trans. Circuits and Systems for Video Technology 20(11), 1555–1564 (2010)CrossRefGoogle Scholar
  98. 98.
    Ttofis, C., Hadjitheophanous, S., Georghiades, A., Theocharides, T.: Edge-directed hardware architecture for real-time disparity map computation. IEEE Trans. Computers PP(99), 1 (2012)Google Scholar
  99. 99.
    Ttofis, C., Theocharides, T.: Towards accurate hardware stereo correspondence: A real-time FPGA implementation of a segmentation-based adaptive support weight algorithm. Proc. Conf. Design, Automation & Test in Europe pp. 703–708 (2012)Google Scholar
  100. 100.
    Vaish, V., Levoy, M., Szeliski, R., Zitnick, C., Sing, B.K.: Reconstructing occluded surfaces using synthetic apertures: Stereo, focus and robust measures. Proc. IEEE Conf. Computer Vision and Pattern Recognition 2, 2331–2338 (2006)Google Scholar
  101. 101.
    Villalpando, C., Morfopolous, A., Matthies, L., Goldberg, S.: FPGA implementation of stereo disparity with high throughput for mobility applications. Proc. IEEE Aerospace Conf. pp. 1–10 (2011)Google Scholar
  102. 102.
    Weber, M., Humenberger, M., Kubinger, W.: A very fast census-based stereo matching implementation on a graphics processing unit. Proc. IEEE Intl. Conf. Computer Vision Workshops pp. 786–793 (2009)Google Scholar
  103. 103.
    Wedel, A., Rabe, C., Vaudrey, T., Brox, T., Franke, U., Cremers, D.: Efficient dense scene flow from sparse or dense stereo data. In: 10th European Conf. on Computer Vision, pp. 739–751. Springer-Verlag, Berlin, Heidelberg (2008)Google Scholar
  104. 104.
    Woodfill, J., Gordon, G., Buck, R.: Tyzx DeepSea high speed stereo vision system. Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshop p. 41 (2004)Google Scholar
  105. 105.
    Woodfill, J., Gordon, G., Jurasek, D., Brown, T., Buck, R.: The Tyzx DeepSea G2 vision system, a taskable, embedded stereo camera. Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshop p. 126 (2006)Google Scholar
  106. 106.
    Woodfill, J., Herzen, B.v.: Real-time stereo vision on the PARTS reconfigurable computer. Proc. IEEE Symp. FPGAs for Custom Computing Machines pp. 201–210 (1997)Google Scholar
  107. 107.
    Xu, Y., Chen, H., Klette, R., Liu, J., Vaudrey, T.: Belief propagation implementation using CUDA on an Nvidia GTX 280. Proc. Advances in Artificial Intelligence 5866, 180–189 (2009)Google Scholar
  108. 108.
    Yamaguchi, K., McAllester, D., Urtasun, R.: Efficient joint segmentation, occlusion labeling, stereo and flow estimation. Proc. European Conf. on Computer Vision (2014)Google Scholar
  109. 109.
    Yang, Q., Wang, L., Yang, R., Wang, S., Liao, M., Nister, D.: Real-time global stereo matching using hierarchical belief propagation. Proc. The British Machine Vision Conf. pp. 989–998 (2006)Google Scholar
  110. 110.
    Yunde, J., Xiaoxun, Z., Mingxiang, L., Luping: A miniature stereo vision machine (MSVM-III) for dense disparity mapping. Proc. IEEE Intl. Conf. Pattern Recognition 1, 728–731 (2004)Google Scholar
  111. 111.
    Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. Proc. European Conf. on Computer Vision pp. 151–158 (1994)Google Scholar
  112. 112.
    Zach, C., Klaus, A., Hadwiger, M., Karner, K.: Accurate dense stereo reconstruction using graphics hardware. Proc. EUROGRAPHICS pp. 227–234 (2003)Google Scholar
  113. 113.
    Zach, C., Sormann, M., Karner, K.: Scanline optimization for stereo on graphics hardware. Proc. Intl. Symp. 3D Data Processing, Visualization, and Transmission pp. 512–518 (2006)Google Scholar
  114. 114.
    Zatt, B., Shafique, M., Bampi, S., Henkel, J.: Multi-level pipelined parallel hardware architecture for high throughput motion and disparity estimation in Multiview Video Coding. Proc. Conf. Design, Automation & Test in Europe pp. 1–6 (2011)Google Scholar
  115. 115.
    Zbontar, J., LeCun, Y.: Stereo matching by training a convolutional neural network to compare image patches. Journal of Machine Learning Research (2016)Google Scholar
  116. 116.
    Zhang, K., Lu, J., Lafruit, G.: Cross-based local stereo matching using orthogonal integral images. Trans. Circuits Syst. Video Techn., IEEE 19, 1073–1079 (2009)Google Scholar
  117. 117.
    Zhang, Z.: Determining the epipolar geometry and its uncertainty: A review. Intl. Journal of Computer Vision, Springer 27(2), 161–195 (1998)Google Scholar
  118. 118.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Analysis and Machine Intelligence 22(11), 1330–1334 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Christian Banz
    • 1
  • Nicolai Behmann
    • 1
  • Holger Blume
    • 1
  • Peter Pirsch
    • 1
  1. 1.Institute of Microelectronic SystemsLeibniz University of HannoverHannoverGermany

Personalised recommendations