Advertisement

Distributed Smart Cameras and Distributed Computer Vision

  • Marilyn Wolf
  • Jason Schlessman
Chapter

Abstract

Distributed smart cameras are multiple-camera systems that perform computer vision tasks using distributed algorithms. Distributed algorithms scale better to large networks of cameras than do centralized algorithms. However, new approaches are required to many computer vision tasks in order to create efficient distributed algorithms. This chapter motivates the need for distributed computer vision, surveys background material in traditional computer vision, and describes several distributed computer vision algorithms for calibration, tracking, and gesture recognition.

Notes

Acknowledgements

This work was supported in part by the National Science Foundation under grant 0720536.

References

  1. 1.
    de Agapito, L., Hartley, R., Hayman, E.: Linear self-calibration of a rotating and zooming camera. In: Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on., vol. 1, pp. 2 vol. (xxiii+637+663) (1999).  https://doi.org/10.1109/CVPR.1999.786911
  2. 2.
    den Bergh, M.V., Koller-Meier, E., Kehl, R., Gool, L.V.: Real-time 3d body pose estimation. In: H. Aghajan, A. Cavallaro (eds.) Multi-Camera Networks: Principles and Applications, chap. 14. Academic Press (2009)Google Scholar
  3. 3.
    Berjon, D., Cuevas, C., Moran, F., Garca, N.: Region-based moving object detection using spatially conditioned nonparametric models in a GPU. In: 2014 IEEE International Conference on Consumer Electronics (ICCE), pp. 359–360 (2014).  https://doi.org/10.1109/ICCE.2014.6776041
  4. 4.
    Bimbo, A.D., Dini, F., Pernici, F., Grifoni, A.: Pan-tilt-zoom camera networks. In: H. Aghajan, A. Cavallaro (eds.) Multi-Camera Networks: Principles and Applications, chap. 8. Academic Press (2009)CrossRefGoogle Scholar
  5. 5.
    Bodensteiner, C., Arens, M.: Real-time 2d video/3d lidar registration. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), pp. 2206–2209 (2012)Google Scholar
  6. 6.
    Boykov, V., Huttenlocher, D.: Adaptive Bayesian recognition in tracking rigid objects. In: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, pp. 697–704. IEEE (2000)Google Scholar
  7. 7.
    Bramberger, M., Quaritsch, M., Winkler, T., Rinner, B., Schwabach, H.: Integrating multi-camera tracking into a dynamic task allocation system for smart cameras. In: Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance (AVSS 2005), pp. 474–479. IEEE (2005)Google Scholar
  8. 8.
    Candy, J.V.: Boostrap particle filtering. IEEE Signal Processing Magazine 73, 73–85 (2007)CrossRefGoogle Scholar
  9. 9.
    Chen, T.W., Chien, S.Y.: Flexible hardware architecture of hierarchical k-means clustering for large cluster number. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 19(8), 1336–1345 (2011).  https://doi.org/10.1109/TVLSI.2010.2049669 CrossRefGoogle Scholar
  10. 10.
    Coates, M.: Distributed particle filters for sensor networks. In: Information Processing in Sensor Networks, 2004. IPSN 2004. Third International Symposium on, pp. 99–107. IEEE (2004)Google Scholar
  11. 11.
    Collins, R.T., Lipton, A.J., Fujiyoshi, H., Kanade, T.: Algorithms for cooperative multisensory surveillance. Proceedings of the IEEE 89(10), 1456–1477 (2001)CrossRefGoogle Scholar
  12. 12.
    Fleuret, F., Berclaz, J., Lengagne, R., Fua, P.: Multicamera people tracking with a probabilistic occupancy map. Pattern Analysis and Machine Intelligence, IEEE Transactions on 30(2), 267 –282 (2008).  https://doi.org/10.1109/TPAMI.2007.1174 CrossRefGoogle Scholar
  13. 13.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, second edn. Cambridge University Press, ISBN: 0521540518 (2004)Google Scholar
  14. 14.
    Horprasesert, T., Harwood, D., Davis, L.S.: A statistical approach for real-time robust background subtraction and shadow detection. In: IEEE International Conference on Computer Vision FRAME-RATE Workshop (1999)Google Scholar
  15. 15.
    Javed, O., Shafique, K., Shah, M.: Appearance modeling for tracking in multiple non-overlapping cameras. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol. 2, pp. 26–33 (2005).  https://doi.org/10.1109/CVPR.2005.71 Google Scholar
  16. 16.
    Kim, H., Romberg, J., Wolf, W.: Multi-camera tracking on a graph using Markov chain monte carlo. In: Proceedings, 2009 ACM/IEEE International Conference on Distributed Smart Cameras. ACM (2009)Google Scholar
  17. 17.
    Kim, H., Wolf, M.: Distributed tracking in a large-scale network of smart cameras. In: Proceedings of the Fourth ACM/IEEE International Conference on Distributed Smart Cameras, p. 8–16. ACM Press (2010)Google Scholar
  18. 18.
    Lamport, L., Melliar-Smith, M.: Synchronizing clocks in the presence of faults. Journal of the ACM 32(1), 52–78 (1985)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lin, C.H., Lv, T., Wolf, W., Ozer, I.B.: A peer-to-peer architecture for distributed real-time gesture recognition. In: Proceedings, International Conference on Multimedia and Exhibition, pp. 27–30. IEEE (2004)Google Scholar
  20. 20.
    Mallett, J., Jr., V.M.B.: Eye society. In: Proceedings IEEE ICME 2003. IEEE (2003)Google Scholar
  21. 21.
    McMillan, L., Bishop, G.: Plenoptic modeling: an image-based rendering system. In: Proceedings, ACM SIGGRAPH, pp. 39–46. ACM (1995)Google Scholar
  22. 22.
    Oh, S., Russell, S., Sastry, S.: Markov chain monte carlo data association for general multiple-target tracking problems. In: Proc. 43rd IEEE Conf. Decision and Control (2004)Google Scholar
  23. 23.
    Pollefeys, M., Sinha, S.N., Guan, L., Franco, J.S.: Multi-view calibration, synchronization, and dynamic scene reconstruction. In: H. Aghajan, A. Cavallaro (eds.) Multi-Camera Networks: Principles and Applications, chap. 2. Academic Press (2009)Google Scholar
  24. 24.
    Porikli, F., Divakaran, A.: Multi-camera calibration, object tracking and query generation. Tech. Rep. TR-2003-100 (2003)Google Scholar
  25. 25.
    Radke, R., Devarajan, D., Cheng, Z.: Calibrating distributed camera networks. Proceedings of the IEEE 96(10), 1625–1639 (2008)CrossRefGoogle Scholar
  26. 26.
    Schlessman, J.: Methodology and architectures for embedded computer vision (2012). PhD Thesis, Department of Electrical Engineering, Princeton University, in preparationGoogle Scholar
  27. 27.
    Sheng, X., Hu, Y.H., Ramanathan, P.: Distributed particle filter with gmm approximation for multiple targets localization and tracking in wireless sensor network. In: Information Processing in Sensor Networks, 2005. IPSN 2005. Fourth International Symposium on, pp. 181–188. IEEE (2005)Google Scholar
  28. 28.
    Song, B., Roy-Chowdhury, A.: Robust tracking in a camera network: A multi-objective optimization framework. Selected Topics in Signal Processing, IEEE Journal of 2(4), 582 –596 (2008).  https://doi.org/10.1109/JSTSP.2008.925992 CrossRefGoogle Scholar
  29. 29.
    Veliapasalar, S., Schlessman, J., Chen, C.Y., Wolf, W.H., Singh, J.P.: A scalable clustered camera system for multiple object tracking. EURASIP Journal on Image and Video Processing 2008 (2008). Article ID 542808Google Scholar
  30. 30.
    Velipasalar, S., Wolf, W.H.: Frame-level temporal calibration of video sequences from unsynchronized cameras. Machine Vision and Applications Journal (DOI 10.1007/s00138-008-0122-6) (2008)Google Scholar
  31. 31.
    Wang, Y., Qian, W., Zhang, S., Liang, X., Yuan, B.: A learning algorithm for bayesian networks and its efficient implementation on gpus. IEEE Transactions on Parallel and Distributed Systems 27(1), 17–30 (2016).  https://doi.org/10.1109/TPDS.2014.2387285 CrossRefGoogle Scholar
  32. 32.
    Wolf, W.: High Performance Embedded Computing. Morgan Kaufman (2006)Google Scholar
  33. 33.
    Wolf, W.: Modern VLSI Design: IP-Based Design, fourth edn. PTR Prentice Hall (2009)Google Scholar
  34. 34.
    Wolf, W., Ozer, B., Lv, T.: Smart cameras as embedded systems. IEEE Computer 35(9), 48–53 (2002)CrossRefGoogle Scholar
  35. 35.
    Yu, H., van Engelen, R.: Importance sampling on Bayesian networks with deterministic causalitiesGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Electrical EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations