Advertisement

Corrosion Behaviors of Additive Manufactured Titanium Alloys

  • Lai-Chang ZhangEmail author
  • Peng Qin
Chapter

Abstract

Owing to the layer-wise characteristic of additive manufacturing (AM) technologies, the microstructure of AM-produced titanium alloys inevitably differs from the alloys produced by conventional methods. Such a resultant microstructure would affect their mechanical properties and corrosion resistance. Selective laser melting (SLM) and electron beam melting (EBM) are the two main forces in the manufacture of the titanium alloys. However, most of the researches on AM-produced titanium alloys have only focused on the mechanical properties of the AM-produced titanium alloys, and just an insufficient part of them are used for the research of corrosion properties. This chapter reviews the very recent progress of the corrosion behavior of SLM- and EBM-produced Ti-6Al-4V alloys, SLM-produced CP-Ti and Ti-TiB composites in different testing solutions as well as various manufacturing planes. The work sheds light the corrosion resistance properties and its mechanisms for AM-produced titanium alloys.

Notes

Acknowledgement

This research was supported by the Australian Research Council’s Discovery Projects (DP110101653) and by the Project of Shanghai Science and Technology Commission (14DZ2261000). The authors are grateful to N.W. Dai, Y. Chen, X.H. Gu, P. Duan for their collaboration.

References

  1. 1.
    Banerjee D, Williams JC (2013) Perspectives on Titanium Science and Technology. Acta Materialia 61 (3):844-879. doi:https://doi.org/10.1016/j.actamat.2012.10.043
  2. 2.
    Geetha M, Singh A, Asokamani R, Gogia A (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Progress in Materials Science 54 (3):397-425.CrossRefGoogle Scholar
  3. 3.
    Zhang LC, Liu YJ, Li SJ, Hao YL (2018) Additive manufacturing of titanium alloys by electron beam melting: a review. Advanced Engineering Materials 20 (5):1700842.Google Scholar
  4. 4.
    Liu YJ, Li SJ, Wang HL, Hou WT, Hao YL, Yang R, Sercombe TB, Zhang LC (2016) Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. Acta Materialia 113:56-67. doi:https://doi.org/10.1016/j.actamat.2016.04.029
  5. 5.
    Ehtemam-Haghighi S, Cao G, Zhang LC (2017) Nanoindentation study of mechanical properties of Ti based alloys with Fe and Ta additions. Journal of Alloys and Compounds 692:892-897.Google Scholar
  6. 6.
    Liu YJ, Wang HL, Li SJ, Wang SG, Wang WJ, Hou WT, Hao YL, Yang R, Zhang LC (2017) Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting. Acta Materialia 126:58-66. doi:https://doi.org/10.1016/j.actamat.2016.12.052
  7. 7.
    Zhang LC, Attar H (2016) Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Advanced Engineering Materials 18 (4):463-475.CrossRefGoogle Scholar
  8. 8.
    Zhang LC, Klemm D, Eckert J, Hao YL, Sercombe TB (2012) Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy. Scripta Materialia 65 (1):21-24.CrossRefGoogle Scholar
  9. 9.
    Dai N, Zhang LC, Zhang J, Chen Q, Wu M (2016) Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution. Corrosion Science 102:484-489. doi:https://doi.org/10.1016/j.corsci.2015.10.041
  10. 10.
    Dai N, Zhang J, Chen Y, Zhang LC (2017) Heat treatment degrading the corrosion resistance of selective laser melted Ti-6Al-4V alloy. Journal of The Electrochemical Society 164 (7):C428-C434. doi:https://doi.org/10.1149/2.1481707jes CrossRefGoogle Scholar
  11. 11.
    Dai N, Zhang LC, Zhang J, Zhang X, Ni Q, Chen Y, Wu M, Yang C (2016) Distinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planes. Corrosion Science 111 (2016):703-710. doi:https://doi.org/10.1016/j.corsci.2016.06.009
  12. 12.
    Attar H, Calin M, Zhang LC, Scudino S, Eckert J (2014) Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Materials Science and Engineering: A 593:170-177. doi:https://doi.org/10.1016/j.msea.2013.11.038
  13. 13.
    Liu YJ, Li XP, Zhang LC, Sercombe TB (2015) Processing and properties of topologically optimised biomedical Ti–24Nb–4Zr–8Sn scaffolds manufactured by selective laser melting. Materials Science and Engineering: A 642:268-278. doi:https://doi.org/10.1016/j.msea.2015.06.088
  14. 14.
    Bai Y, Gai X, Li SJ, Zhang LC, Liu YJ, Hao YL, Zhang X, Yang R, Gao YB (2017) Improved corrosion behaviour of electron beam melted Ti-6Al-4V alloy in phosphate buffered saline. Corrosion Science 123:289-296. doi:https://doi.org/10.1016/j.corsci.2017.05.003
  15. 15.
    Chen Y, Zhang J, Dai N, Qin P, Attar H, Zhang LC (2017) Corrosion Behaviour of Selective Laser Melted Ti-TiB Biocomposite in Simulated Body Fluid. Electrochimica Acta 232:89-97. doi:https://doi.org/10.1016/j.electacta.2017.02.112
  16. 16.
    Xin XZ, Chen J, Xiang N, Gong Y, Wei B (2014) Surface characteristics and corrosion properties of selective laser melted Co–Cr dental alloy after porcelain firing. Dental Materials 30 (3):263-270. doi:https://doi.org/10.1016/j.dental.2013.11.013
  17. 17.
    Lu Y, Wu S, Gan Y, Li J, Zhao C, Zhuo D, Lin J (2015) Investigation on the microstructure, mechanical property and corrosion behavior of the selective laser melted CoCrW alloy for dental application. Materials Science and Engineering: C 49:517-525. doi:https://doi.org/10.1016/j.msec.2015.01.023
  18. 18.
    Lu Y, Guo S, Yang Y, Liu Y, Zhou Y, Wu S, Zhao C, Lin J (2018) Effect of thermal treatment and fluoride ions on the electrochemical corrosion behavior of selective laser melted CoCrW alloy. Journal of Alloys and Compounds 730:552-562. doi:https://doi.org/10.1016/j.jallcom.2017.09.318
  19. 19.
    Chao Q, Cruz V, Thomas S, Birbilis N, Collins P, Taylor A, Hodgson PD, Fabijanic D (2017) On the enhanced corrosion resistance of a selective laser melted austenitic stainless steel. Scripta Materialia 141:94-98. doi:https://doi.org/10.1016/j.scriptamat.2017.07.037
  20. 20.
    Sander G, Thomas S, Cruz V, Jurg M, Birbilis N, Gao X, Brameld M, Hutchinson C (2017) On the corrosion and metastable pitting characteristics of 316L stainless steel produced by selective laser melting. Journal of The Electrochemical Society 164 (6):C250-C257.CrossRefGoogle Scholar
  21. 21.
    Chen Y, Zhang JX, Gu XH, Dai NW, Qin P, Zhang LC (2018) Distinction of corrosion resistance of selective laser melted Al-12Si alloy on different planes. Journal of Alloys and Compounds 747:648-658.Google Scholar
  22. 22.
    Liu YJ, Liu Z, Jiang Y, Wang GW, Yang Y, Zhang LC (2018) Gradient in microstructure and mechanical property of selective laser melted AlSi10Mg. Journal of Alloys and Compounds 735:1414-1421.Google Scholar
  23. 23.
    Li XP, Kang CW, Huang H, Zhang LC, Sercombe TB (2014) Selective laser melting of an Al86Ni6Y4.5Co2La1.5 metallic glass: Processing, microstructure evolution and mechanical properties. Materials Science and Engineering: A 606:370-379. doi:https://doi.org/10.1016/j.msea.2014.03.097
  24. 24.
    Karimzadeh F, Heidarbeigy M, Saatchi A (2008) Effect of heat treatment on corrosion behavior of Ti–6Al–4V alloy weldments. Journal of Materials Processing Technology 206 (1):388-394.CrossRefGoogle Scholar
  25. 25.
    Thijs L, Verhaeghe F, Craeghs T, Van Humbeeck J, Kruth J-P (2010) A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Materialia 58 (9):3303-3312.CrossRefGoogle Scholar
  26. 26.
    Vilaro T, Colin C, Bartout JD (2011) As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting. Metallurgical and Materials Transactions A 42 (10):3190-3199. doi:https://doi.org/10.1007/s11661-011-0731-y CrossRefGoogle Scholar
  27. 27.
    Vrancken B, Thijs L, Kruth J-P, Van Humbeeck J (2012) Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties. Journal of Alloys and Compounds 541:177-185. doi:https://doi.org/10.1016/j.jallcom.2012.07.022
  28. 28.
    Chen JR, Tsai WT (2011) In situ corrosion monitoring of Ti–6Al–4V alloy in H2SO4/HCl mixed solution using electrochemical afm. Electrochimica Acta 56 (4):1746-1751. doi:https://doi.org/10.1016/j.electacta.2010.10.024
  29. 29.
    Alves AC, Wenger F, Ponthiaux P, Celis JP, Pinto AM, Rocha LA, Fernandes JCS (2017) Corrosion mechanisms in titanium oxide-based films produced by anodic treatment. Electrochimica Acta 234:16-27. doi:https://doi.org/10.1016/j.electacta.2017.03.011
  30. 30.
    Bandeira RM, van Drunen J, Garcia AC, Tremiliosi-Filho G (2017) Influence of the thickness and roughness of polyaniline coatings on corrosion protection of AA7075 aluminum alloy. Electrochimica Acta 240:215-224. doi:https://doi.org/10.1016/j.electacta.2017.04.083
  31. 31.
    Atapour M, Pilchak A, Shamanian M, Fathi M (2011) Corrosion behavior of Ti–8Al–1Mo–1V alloy compared to Ti–6Al–4V. Materials & Design 32 (3):1692-1696CrossRefGoogle Scholar
  32. 32.
    Qin P, Liu YJ, Sercombe TB, Li Y, Zhang C, Cao C, Sun H, Zhang LC (2018) Improved corrosion resistance on selective laser melting produced Ti-5Cu alloy after heat treatment. ACS Biomaterials Science & Engineering 20: in press. doi:https://doi.org/10.1021/acsbiomaterials.8b00319
  33. 33.
    Yang Y, Chen Y, Zhang J, Gu X, Qin P, Dai N, Li X, Kruth JP, Zhang LC (2018) Improved corrosion behavior of ultrafine-grained eutectic Al-12Si alloy produced by selective laser melting. Materials & Design 146:239-248.CrossRefGoogle Scholar
  34. 34.
    Huttunen-Saarivirta E, Rajala P, Bomberg M, Carpén L (2017) EIS study on aerobic corrosion of copper in ground water: influence of micro-organisms. Electrochimica Acta 240:163-174. doi:https://doi.org/10.1016/j.electacta.2017.04.073
  35. 35.
    Feng R, Beck J, Ziomek-Moroz M, Lvov SN (2016) Electrochemical corrosion of ultra-high strength carbon steel in alkaline brines containing hydrogen sulfide. Electrochimica Acta 212:998-1009. doi:https://doi.org/10.1016/j.electacta.2016.07.070
  36. 36.
    Karimi S, Nickchi T, Alfantazi AM (2012) Long-term corrosion investigation of AISI 316L, Co–28Cr–6Mo, and Ti–6Al–4V alloys in simulated body solutions. Applied Surface Science 258 (16):6087-6096CrossRefGoogle Scholar
  37. 37.
    Gong X, Cui Y, Wei D, Liu B, Liu R, Nie Y, Li Y (2017) Building direction dependence of corrosion resistance property of Ti–6Al–4V alloy fabricated by electron beam melting. Corrosion Science 127:101-109. doi:https://doi.org/10.1016/j.corsci.2017.08.008
  38. 38.
    Kherrouba N, Bouabdallah M, Badji R, Carron D, Amir M (2016) Beta to alpha transformation kinetics and microstructure of Ti-6Al-4V alloy during continuous cooling. Materials Chemistry and Physics 181:462-469. doi:https://doi.org/10.1016/j.matchemphys.2016.06.082
  39. 39.
    Appolaire B, Héricher L, Aeby-Gautier E (2005) Modelling of phase transformation kinetics in Ti alloys – Isothermal treatments. Acta Materialia 53 (10):3001-3011. doi:https://doi.org/10.1016/j.actamat.2005.03.014
  40. 40.
    De Formanoir C, Michotte S, Rigo O, Germain L, Godet S (2016) Electron beam melted Ti–6Al–4V: Microstructure, texture and mechanical behavior of the as-built and heat-treated material. Materials Science and Engineering: A 652:105-119. doi:https://doi.org/10.1016/j.msea.2015.11.052
  41. 41.
    Shi Y, Peng C, Feng Y, Wang R, Wang N (2017) Microstructure and electrochemical corrosion behavior of extruded Mg–Al–Pb–La alloy as anode for seawater-activated battery. Materials & Design 124:24-33. doi:https://doi.org/10.1016/j.matdes.2017.03.058
  42. 42.
    Wang N, Wang R, Feng Y, Xiong W, Zhang J, Deng M (2016) Discharge and corrosion behaviour of Mg-Li-Al-Ce-Y-Zn alloy as the anode for Mg-air battery. Corrosion Science 112:13-24. doi:https://doi.org/10.1016/j.corsci.2016.07.002
  43. 43.
    Shi Z, Liu M, Atrens A (2010) Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corrosion Science 52 (2):579-588. doi:https://doi.org/10.1016/j.corsci.2009.10.016
  44. 44.
    Osório WR, Freire CM, Garcia A (2005) The role of macrostructural morphology and grain size on the corrosion resistance of Zn and Al castings. Materials Science and Engineering: A 402 (1):22-32. doi:https://doi.org/10.1016/j.msea.2005.02.094
  45. 45.
    LuoJian Z (2012) Influence of grain size on corrosion resistant of commonly used metals. Corrosion&Protection 33 (4):349-352Google Scholar
  46. 46.
    Song G, Atrens A, Dargusch M (1998) Influence of microstructure on the corrosion of diecast AZ91D. Corrosion Science 41 (2):249-273. doi:https://doi.org/10.1016/S0010-938X(98)00121-8 CrossRefGoogle Scholar
  47. 47.
    Zaveri N, Mahapatra M, Deceuster A, Peng Y, Li L, Zhou A (2008) Corrosion resistance of pulsed laser-treated Ti–6Al–4V implant in simulated biofluids. Electrochimica Acta 53 (15):5022-5032. doi:https://doi.org/10.1016/j.electacta.2008.01.086 CrossRefGoogle Scholar
  48. 48.
    Yu F, Addison O, Davenport AJ (2015) A synergistic effect of albumin and H(2)O(2) accelerates corrosion of Ti6Al4V. Acta Biomaterialia 26:355-365. doi:https://doi.org/10.1016/j.actbio.2015.07.046 CrossRefGoogle Scholar
  49. 49.
    Alves VA, Reis RQ, Santos ICB, Souza DG, de F. Gonçalves T, Pereira-da-Silva MA, Rossi A, da Silva LA (2009) In situ impedance spectroscopy study of the electrochemical corrosion of Ti and Ti–6Al–4V in simulated body fluid at 25°C and 37°C. Corrosion Science 51 (10):2473-2482. doi:https://doi.org/10.1016/j.corsci.2009.06.035
  50. 50.
    Rahmati B, Sarhan AAD, Basirun WJ, Abas WABW (2016) Ceramic tantalum oxide thin film coating to enhance the corrosion and wear characteristics of Ti6Al4V alloy. Journal of Alloys and Compounds 676:369-376. doi:https://doi.org/10.1016/j.jallcom.2016.03.188 CrossRefGoogle Scholar
  51. 51.
    Saud SN, Hosseinian.S R, Bakhsheshi-Rad HR, Yaghoubidoust F, Iqbal N, Hamzah E, Ooi CHR (2016) Corrosion and bioactivity performance of graphene oxide coating on TiNb shape memory alloys in simulated body fluid. Materials Science and Engineering: C 68:687-694. doi:https://doi.org/10.1016/j.msec.2016.06.048 CrossRefGoogle Scholar
  52. 52.
    Sing SL, Yeong WY, Wiria FE (2016) Selective laser melting of titanium alloy with 50 wt% tantalum: Microstructure and mechanical properties. Journal of Alloys and Compounds 660:461-470. doi:https://doi.org/10.1016/j.jallcom.2015.11.141 CrossRefGoogle Scholar
  53. 53.
    Chen JR, Tsai, Wen Ta (2011) In situ corrosion monitoring of Ti–6Al–4V alloy in H2SO4/HCl mixed solution using electrochemical AFM. Electrochimica Acta 56 (4):1746-1751. doi:https://doi.org/10.1016/j.electacta.2010.10.024 CrossRefGoogle Scholar
  54. 54.
    Addison O, Davenport AJ, Newport RJ, Kalra S, Monir M, Mosselmans JF, Proops D, Martin RA (2012) Do ‘passive’ medical titanium surfaces deteriorate in service in the absence of wear? Journal of the Royal Society, Interface 9 (76):3161-3164. doi:https://doi.org/10.1098/rsif.2012.0438 CrossRefGoogle Scholar
  55. 55.
    Mabilleau G, Bourdon S, Joly-Guillou ML, Filmon R, Basle MF, Chappard D (2006) Influence of fluoride, hydrogen peroxide and lactic acid on the corrosion resistance of commercially pure titanium. Acta Biomaterialia 2 (1):121-129. doi:https://doi.org/10.1016/j.actbio.2005.09.004 CrossRefGoogle Scholar
  56. 56.
    Fei Yu OA, Alison J. Davenport, Stephen J Baker (2015) Lipopolysaccharide inhibits or accelerates biomedical titanium corrosion depending on environmental acidity. International Journal of Oral Science:1-8Google Scholar
  57. 57.
    Attar H, Bönisch M, Calin M, Zhang LC, Zhuravleva K, Funk A, Scudino S, Yang C, Eckert J (2014) Comparative study of microstructures and mechanical properties of in situ Ti–TiB composites produced by selective laser melting, powder metallurgy, and casting technologies. Journal of Materials Research 29 (17):1941-1950. doi:https://doi.org/10.1557/jmr.2014.122 CrossRefGoogle Scholar
  58. 58.
    Cheloui H, Zhang Z, Shen X, Wang F, Lee S (2011) Microstructure and mechanical properties of TiB–TiB2 ceramic matrix composites fabricated by spark plasma sintering. Materials Science and Engineering: A 528 (10-11):3849-3853. doi:https://doi.org/10.1016/j.msea.2011.01.096 CrossRefGoogle Scholar
  59. 59.
    Morsi K, Patel VV (2007) Processing and properties of titanium–titanium boride (TiBw) matrix composites—a review. Journal of Materials Science 42 (6):2037-2047. doi:https://doi.org/10.1007/s10853-006-0776-2 CrossRefGoogle Scholar
  60. 60.
    Attar H, Bönisch M, Calin M, Zhang LC, Scudino S, Eckert J (2014) Selective laser melting of in situ titanium–titanium boride composites: processing, microstructure and mechanical properties. Acta Materialia 76:13-22.CrossRefGoogle Scholar
  61. 61.
    Atapour M, Pilchak A, Frankel GS, Williams JC (2010) Corrosion behaviour of investment cast and friction stir processed Ti–6Al–4V. Corrosion Science 52 (9):3062-3069. doi:https://doi.org/10.1016/j.corsci.2010.05.026
  62. 62.
    González JEG, Mirza-Rosca JC (1999) Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. Journal of Electroanalytical Chemistry 471 (2):109-115. doi:https://doi.org/10.1016/S0022-0728(99)00260-0
  63. 63.
    Wei D-X, Koizumi Y, Li Y, Yamanak K, Chiba A (2016) Submicron lamellar porous structure formed by selective dissolution of Ti-Al alloy. Materials & Design 98:1-11. doi:https://doi.org/10.1016/j.matdes.2016.02.096
  64. 64.
    Håkansson E, Hoffman J, Predecki P, Kumosa M (2017) The role of corrosion product deposition in galvanic corrosion of aluminum/carbon systems. Corrosion Science 114:10-16CrossRefGoogle Scholar
  65. 65.
    Anes V, Pedro RS, Henriques E, Freitas M, Reis L (2016) Galvanic corrosion of aircraft bonded joints as a result of adhesive microcracks. Procedia Structural Integrity 1:218-225. doi:https://doi.org/10.1016/j.prostr.2016.02.030
  66. 66.
    Martín-Cameán A, Jos Á, Mellado-García P, Iglesias-Linares A, Solano E, Cameán AM (2015) In vitro and in vivo evidence of the cytotoxic and genotoxic effects of metal ions released by orthodontic appliances: A review. Environmental Toxicology and Pharmacology 40 (1):86-113. doi:https://doi.org/10.1016/j.etap.2015.05.007
  67. 67.
    Choubey A, Balasubramaniam R, Basu B (2004) Effect of replacement of V by Nb and Fe on the electrochemical and corrosion behavior of Ti–6Al–4V in simulated physiological environment. Journal of Alloys and Compounds 381 (1):288-294. doi:https://doi.org/10.1016/j.jallcom.2004.03.096
  68. 68.
    Ramirez-Ledesma AL, Lopez-Molina E, Lopez HF, Juarez-Islas JA (2016) Athermal ε-martensite transformation in a Co–20Cr alloy: Effect of rapid solidification on plate nucleation. Acta Materialia 111:138-147. doi:https://doi.org/10.1016/j.actamat.2016.03.047
  69. 69.
    Yamanaka K, Mori M, Chiba A (2015) Surface characterisation of Ni-free Co–Cr–W-based dental alloys exposed to high temperatures and the effects of adding silicon. Corrosion Science 94:411-419. doi:https://doi.org/10.1016/j.corsci.2015.02.030
  70. 70.
    Tkachenko S, Datskevich O, Kulak L, Jacobson S, Engqvist H, Persson C (2014) Wear and friction properties of experimental Ti–Si–Zr alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials 39:61-72. doi:https://doi.org/10.1016/j.jmbbm.2014.07.011
  71. 71.
    Xiang N, Xin X-Z, Chen J, Wei B (2012) Metal–ceramic bond strength of Co–Cr alloy fabricated by selective laser melting. Journal of Dentistry 40 (6):453-457. doi:https://doi.org/10.1016/j.jdent.2012.02.006
  72. 72.
    Yamanaka K, Mori M, Chiba A (2014) Refinement of solidification microstructures by carbon addition in biomedical Co–28Cr–9W–1Si alloys. Materials Letters 116:82-85. doi:https://doi.org/10.1016/j.matlet.2013.10.109
  73. 73.
    Lu Y, Lu Y, Gan Y, Gan Y, Lin J, Lin J, Guo S, Guo S, Wu S, Wu S (2017) Effect of laser speeds on the mechanical property and corrosion resistance of CoCrW alloy fabricated by SLM. Rapid Prototyping Journal 23 (1):28-33CrossRefGoogle Scholar
  74. 74.
    Zeng L, Xiang N, Wei B (2014) A comparison of corrosion resistance of cobalt-chromium-molybdenum metal ceramic alloy fabricated with selective laser melting and traditional processing. The Journal of Prosthetic Dentistry 112 (5):1217-1224. doi:https://doi.org/10.1016/j.prosdent.2014.03.018
  75. 75.
    Fujieda T, Shiratori H, Kuwabara K, Hirota M, Kato T, Yamanaka K, Koizumi Y, Chiba A, Watanabe S (2017) CoCrFeNiTi-based high-entropy alloy with superior tensile strength and corrosion resistance achieved by a combination of additive manufacturing using selective electron beam melting and solution treatment. Materials Letters 189:148-151. doi:https://doi.org/10.1016/j.matlet.2016.11.026
  76. 76.
    Davis JR (1994) Stainless steels. ASM international,Google Scholar
  77. 77.
    Sedriks AJ (1996) Corrosion of stainless steel. 2nd edition edn. John Wiley and Sons, Inc., New York, NY (United States),Google Scholar
  78. 78.
    Ryan MP, Williams DE, Chater RJ, Hutton BM, McPhail DS (2002) Why stainless steel corrodes. Nature 415 (6873):770-774CrossRefGoogle Scholar
  79. 79.
    Williams DE, Kilburn MR, Cliff J, Waterhouse GIN (2010) Composition changes around sulphide inclusions in stainless steels, and implications for the initiation of pitting corrosion. Corrosion Science 52 (11):3702-3716. doi:https://doi.org/10.1016/j.corsci.2010.07.021
  80. 80.
    Wijesinghe TLSL, Blackwood DJ (2007) Real time pit initiation studies on stainless steels: The effect of sulphide inclusions. Corrosion Science 49 (4):1755-1764. doi:https://doi.org/10.1016/j.corsci.2006.10.025
  81. 81.
    Jun J, Holguin K, Frankel G (2013) Pitting corrosion of very clean type 304 stainless steel. Corrosion 70 (2):146-155CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Edith Cowan UniversityPerthAustralia

Personalised recommendations