Fabrication of PLA-HAp-CS Based Biocompatible and Biodegradable Feedstock Filament Using Twin Screw Extrusion

  • Nishant Ranjan
  • Rupinder Singh
  • I. P. S Ahuja
  • Jatenderpal Singh


In this chapter, detailed procedure for development of biocompatible and biodegradable composite material based feedstock filament, by using twin screw extrusion (TSE) process has been highlighted. The poly lactic acid (PLA) has been selected as a polymer matrix with hydroxyapatite (HAp) and chitosan (CS) as osteo-conductive filler for potential use in medical applications. The feedstock filament of PLA-HAp-CS can be used in fused deposition modelling (FDM) open source 3D printer (without change in any hardware or software of system) for printing of functional/ non functional prototypes. The results are supported by tensile testing; thermal analysis; and scanning electron microscope (SEM) based photomicrographs. Finally the feasibility of fabrication of functional prototypes for medical applications by using in house prepared feedstock filament on the FDM has been ascertained.


Fused deposition modelling CS HAp PLA Biomedical implants Biocompatibility Biodegradability Wear 



The authors are thankful to SERB (DST), GOI for financial support and Manufacturing Research Lab (Dept. of Production Engineering, Guru Nanak Dev Engineering College, Ludhiana), Punjabi University Patiala for technical support.


  1. 1.
    Anitha, R. and Arunachalam, S. (2001), “Critical parameters influencing the quality of prototypes in fused deposition modeling”, Journal of Materials Processing Technology, Vol. 113, Issue 1–3, pp. 385–388.CrossRefGoogle Scholar
  2. 2.
    Chhabra, M. and Singh, R. (2011), “Rapid casting solutions a review”, Rapid Prototyping Jounral, Vol. 17, pp. 328–350.CrossRefGoogle Scholar
  3. 3.
    Choudhury, A., Chakraborty, D. and Reddy, B. (2007), “Extruder path generation for Curved Layer Fused Deposition Modeling”, Computer-aided design Journal, Vol. 40, pp. 235–243.Google Scholar
  4. 4.
    Singh, R., Singh, S., Singh, I. P., Fabbrocino, F. and Fraternali, F. (2017), “Investigation for surface finish improvement of FDM parts by vapour smoothing process”, Composites Part B: Engineering, Vol. 111, pp. 228–234.CrossRefGoogle Scholar
  5. 5.
    Kumar, R., Singh, R., Hui, D., Feo, L. and Fraternali, F. (2017), “Graphene as biomedical sensing element: State of art review and potential engineering applications”, Composites Part B: Engineering,
  6. 6.
    Singh, R., Kumar, R., Feo, L. and Fraternali, F. (2016), “Friction welding of dissimilar plastic/polymer materials with metal powder reinforcement for engineering applications”, Composites Part B: Engineering, Vol. 101, pp. 77–86.CrossRefGoogle Scholar
  7. 7.
    Block, J. E. and Poser, J. (1995), “Does xenogeneic demineralized bone matrix have clinical utility as a bone graft substitute?”,Med Hypotheses, Vol. 45, pp. 27–32.CrossRefGoogle Scholar
  8. 8.
    Sasso, R. C., Williams, J. I., Dimasi, N., Meyer Jr. P. R. (1998), “Postoperative drains at the donor site of iliac-crest bone grafts. A prospective, randomized study of morbidity at the donor site in patients who had a traumatic injury of the spine”, J Bone Joint Surgical Am, Vol. 80, pp. 631–635.CrossRefGoogle Scholar
  9. 9.
    Rose, F. R. A. J. and Oreffo, R. O. C. (2002), “Bone tissue engineering: hope vs hype”, BiochemBiophys Res Commun, Vol. 292, pp. 1–7.CrossRefGoogle Scholar
  10. 10.
    Du, C., Cui, F. Z., Zhang, W., Feng, Q. L., Zhu, X. D. and Groot, K. D. (2000), “ Formation of calcium phosphate/collagen composites through mineralization of collagen matrix”, J Biomed Mater Res A, Vol. 50, pp. 518–27.CrossRefGoogle Scholar
  11. 11.
    Kikuchi, M., Itoh, S., Ichinose, S., Shinomiya, K. and Tanaka, J. (2001), “Self organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo”, Biomaterials, Vol. 22, pp. 1705–11.CrossRefGoogle Scholar
  12. 12.
    Burg, K. J. L., Porter, S. and Kellam, J. F. (2000), “Biomaterial developments for bone tissue engineering”, Biomaterials, Vol. 21, pp. 2347–2359.CrossRefGoogle Scholar
  13. 13.
    Chang, M. C. and Tanaka, J. (2002), “XPS study for the microstructure development of hydroxyapatite-collagen nano-composites cross linked using glutaraldehyde”, Biomaterials, Vol. 23, pp. 3879–85.CrossRefGoogle Scholar
  14. 14.
    Grodzinski, J. J. (1999), “Biomedical application of functional polymers”, React Function Polymer, Vol. 39, pp. 99–138.CrossRefGoogle Scholar
  15. 15.
    Hutmacher, D. W. (2000), “Scaffolds in tissue engineering bone and cartilage”, Biomaterials, Vol. 21, pp. 29–43.CrossRefGoogle Scholar
  16. 16.
    Ishihara, M., Ono, K., Saito, Y., Yura, H., Hattori, H. and Matsui, T. (2001), “Photo cross-linkable chitosan: an effective adhesive with surgical applications”, Int Cong Ser, Vol. 1223, pp. 251–257.CrossRefGoogle Scholar
  17. 17.
    Madihally, S. V. and Matthew, H. W. T. (1999), “Porous chitosan scaffolds for tissue engineering”, Biomaterials, Vol. 20, pp. 1133–1142.CrossRefGoogle Scholar
  18. 18.
    Mi, F. L., Tan, Y. C., Liang, H. F. and Sung, H. W. (2002), “In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant”, Biomaterials, Vol. 23, pp. 181–91.CrossRefGoogle Scholar
  19. 19.
    Wang, L. S., Khor, E., Wee, A. and Lim, L. Y. (2002), “Chitosan-alginate PEC membrane as a wound dressing: assessment of incisional wound healing”, J Biomed Mater Res B, Vol. 63, pp. 610–618.CrossRefGoogle Scholar
  20. 20.
    Li, Z. S., Ramay, H. R., Hauch, K. D., Xiao, D. M. and Zhang, M. Q. (2005), “Chitosan-alginate hybrid scaffolds for bone tissue engineering”, Biomaterials, Vol. 26, pp. 3919–3928.CrossRefGoogle Scholar
  21. 21.
    Sarasam, A. and Madihally, S. V. (2005), “Characterization of chitosan-polycaprolactone blends for tissue engineering applications”, Biomaterials, Vol. 26, Issue 5, pp. 500–508.Google Scholar
  22. 22.
    Shanmugasundaram, N., Ravichandran, P., Reddy, P. N., Ramamurty, N., Pal, S. and Rao, K. P. (2001), “Collagen-chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells”, Biomaterials, Vol. 22, pp. 1943–1951.CrossRefGoogle Scholar
  23. 23.
    Andrew, C. A. W., Eugene, K. and Garth, W. H. (1998), “Preparation of a chitin–apatite composite by in situ precipitation onto porous chitin scaffolds”, J Biomed Mater Res A, Vol. 41, pp. 541–548.CrossRefGoogle Scholar
  24. 24.
    Kawakami, T., Antoh, M., Hasegawa, H., Yamagichi, T., Ito, M. and Eda, S. (1992), “Experimental study on osteoconductive properties of chitosan-bonded hydroxyapatite self-hardening paste”, Biomaterials, Vol. 13, pp. 759–763.CrossRefGoogle Scholar
  25. 25.
    Yamaguchi, I., Tokuchi, K., Fukuzaki, H., Koyama, Y., Takakuda, K. and Monma, H. (2001), “Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites”, J Biomed Mater Res A, Vol. 55, pp. 20–27.CrossRefGoogle Scholar
  26. 26.
    Yin, Y. J., Zhao, F., Song, X. F., Yao, K. D., Lu, W. W. and Leong, J. C. (2000), “Preparation and characterization of hydroxyapatite/chitosan–gelatin network composite”, J ApplPolymSci, Vol. 77, pp. 2929–2938.Google Scholar
  27. 27.
    Ariyapitipun, T., Mustapha, A. and Clarke, A. D. (1999), “Microbial shelf life determination of vacuum-packaged fresh beef treated with polylactic acid, lactic acid, and nisin solutions”, Journal of food protection, Vol. 62, Issue 8, pp. 913–920.CrossRefGoogle Scholar
  28. 28.
    Kale, G., Auras, R., Singh, S. P. and Narayan, R. (2007), “Biodegradability of polylactide bottles in real and simulated composting conditions”, Polymer Testing, Vol. 26, Issue 8, pp. 1049–1061.CrossRefGoogle Scholar
  29. 29.
    Fini, M., Giannini, S., Gioradano, R., Giavaresi, G., Grimaldi, M. and Aldini, N. N. (1995), “Resorbable device for fracture fixation: in vivo degradation and mechanical behavior”, Int J Artif Organs, Vol. 18, pp. 772–776.CrossRefGoogle Scholar
  30. 30.
    Shen, X. Y., Tong, H., Jiang, T., Zhu, Z. H., Wan, P. and Hu, J. M. (2007), “Homogeneous chitosan/carbonate apatite/citric acid nano-composites prepared through a novel in situ precipitation method”, Compos Sci Technology, Vol. 67, pp. 2238–2245.CrossRefGoogle Scholar
  31. 31.
    Taddei, P., Monti, P. and Simoni, R. (2002), “Vibrational and thermal study on the in vitro and in vivo degradation of a poly (lactic acid) based bio-absorbable periodontal membrane”, J Mater Sci Mater Med, Vol. 13, pp. 469–475.CrossRefGoogle Scholar
  32. 32.
    Shen, X. Y., Tong, H., Zhu, Z. H., Wan, P. and Hu, J. M. (2007), “A novel approach of homogenous inorganic/organic composites through in situ precipitation in poly-acrylic acid gel”, Mater Lett, Vol. 61, pp. 629–634.CrossRefGoogle Scholar
  33. 33.
    Gupta, B., Revagade, N. and Hilborn J. (2007), “Poly (lactic acid) fiber: an overview”, Prog. Polym.Sci., Vol. 32, pp. 455–482.CrossRefGoogle Scholar
  34. 34.
    Ge, Z., Goh, J.C., Wang, L., Tan, E.P. and Lee, E.H. (2005),“Characterization of knitted polymeric scaffolds for potential use in ligament tissue engineering”, J. Biomater. Sci. Polym. Ed., Vol. 16, pp. 1179–1192.CrossRefGoogle Scholar
  35. 35.
    Ouyang, H.W., Goh, J.C., Thambyah, A., Teoh, S.H. and Lee, E.H. (2003),“Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regenera-tion of rabbit Achilles tendon”, Tissue Eng.,Vol. 9,pp. 431–439.CrossRefGoogle Scholar
  36. 36.
    Freeman, J.W., Woods, M.D. and Laurencin, C.T. (2007),“Tissue engineering of the anterior cruciate ligament using a braid–twist scaffold design”, J. Biomech., Vol. 40, pp. 2029–2036.CrossRefGoogle Scholar
  37. 37.
    Singh, R., Kumar, R., Ranjan, N., Penna, R. and Fraternali, F. (2017), “On the recyclability of polyamide for sustainable composite structures in civil engineering”, Composite Structures,
  38. 38.
    Kalita, S.J., Bhardwaj, A. and Bhatt, H.A.(2007), “Nanocrystalline calcium phosphate ceramics in biomedical engineering”,Material Science and Engineering: C, Vol. 27, Issue 3, pp. 441–449.CrossRefGoogle Scholar
  39. 39.
    Mostafa, N.Y. and Brown, P.W. (2007),“Computer simulation of stoichiometric hydroxyapatite: Structure and substitutions”,Journal of Physics and Chemistry of Solids, Vol. 68, Issue 3, pp. 431–437.CrossRefGoogle Scholar
  40. 40.
    Teixeira, S., Rodriguez, M.A., Pena, P., De Aza, A.H., De Aza, S. and Ferraz, M.P. (2009),“Physical characterization of hydroxyapatite porous scaffolds for tissue engineering”,Material Science and Engineering: C, Vol. 29, Issue 5, pp. 1510–1524.CrossRefGoogle Scholar
  41. 41.
    Guo, L., Huang, M. and Zhang, X.(2003),“Effects of sintering temperature on structure of hydroxyapatite studied with Rietveld method”, Journal of Materials Science: Material in Medicine, Vol. 14, Issue 9, pp. 817–822.Google Scholar
  42. 42.
    Auras, R., Harte, B. and Selke S. (2004), “An overview of polylactides as packaging materials”, Macromol. Biosci., Vol. 4, pp. 835–864.CrossRefGoogle Scholar
  43. 43.
    Ravindra, R., Krovvidi, K.R. and Khan, A.A. (1998), “Solubility parameter of chitin and chitosan”, Carbohydr. Polym., Vol. 36, pp. 121–127.CrossRefGoogle Scholar
  44. 44.
    Bonilla, J., Fortunati, E., Vargas, M., Chiralt, A. and Kenny, J.M. (2013), “Effects of chitosan on the physicochemical and antimicrobial properties of PLA films”, J. Food Eng., Vol. 119, pp. 236–243.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nishant Ranjan
    • 1
    • 2
  • Rupinder Singh
    • 1
  • I. P. S Ahuja
    • 2
  • Jatenderpal Singh
    • 3
  1. 1.Department of Production EngineeringGuru Nanak Dev Engineering CollegeLudhianaIndia
  2. 2.Department of Mechanical EngineeringPunjabi UniversityPatialaIndia
  3. 3.Department of Defence ProductionDGQA, SQAE (A)Jabalpur (M.P)India

Personalised recommendations