Does EKG Favor a Correct Localization of the Ischemic Areas?

  • Erika Baiocco
  • Paolo Compagnucci
  • Daniele Contadini


Ischemic heart disease (IHD) is the most common cause of death worldwide and its prevalence is increasing. The electrocardiogram (EKG) is a fundamental diagnostic tool in the setting of suspected myocardial ischemia. Ischemia produces complex changes in the EKG, involving the QRS complex and, mostly, the repolarization phase (ST-segment). In this chapter we will review the basic mechanisms underlying these EKG changes, focusing on the theories of diastolic and systolic currents of injury. Furthermore, starting from clinical cases, we will try to give the clinician practical and useful tips for the correct interpretation of the EKG in order to identify the area of the myocardium involved by ischemia, the occluded coronary artery and also to capture prognostic information. Our final goal is being to improve patient management and help choosing the most appropriate therapy.


  1. 1.
    Bayés de Luna A, Fiol-Sala M. Where is the culprit lesion? Circulation. 2016;134(19):1507–9.CrossRefGoogle Scholar
  2. 2.
    Thygesen K, Alpert JS, Jaffe AS, et al. Third universal definition of myocardial infarction. ESC Committee for Practice Guidelines (CPG). Eur Heart J. 2012;33(20):2551–67.CrossRefGoogle Scholar
  3. 3.
    Ibanez B, James S, Agewall S, Antunes MJ, et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2017;39(2):119–77.CrossRefGoogle Scholar
  4. 4.
    Roffi M, Patrono C, Pet CJ, et al. ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(3):267–315.CrossRefGoogle Scholar
  5. 5.
    Samson WE, Scher AM. Mechanism of ST segment alteration during acute myocardial injury. Circ Res. 1960;8:780–7.CrossRefGoogle Scholar
  6. 6.
    Di Diego JM, Antzelevitch C. Acute myocardial ischemia: cellular mechanisms underlying ST segment elevation. J Electrocardiol. 2014;47(4):486–90.CrossRefGoogle Scholar
  7. 7.
    Krishnan SC, Antzelevitch C. Sodium channel block produces opposite electrophysiological effects in canine ventricular epicardium and endocardium. Circ Res. 1991;69:277–91.CrossRefGoogle Scholar
  8. 8.
    Zimetbaum PJ, Josephson ME. Use of the electrocardiogram in acute myocardial infarction. N Engl J Med. 2003;348:933–40.CrossRefGoogle Scholar
  9. 9.
    Fiol M, Carrillo A, Rodríguez A, Pascual M, et al. Electrocardiographic changes of ST-elevation myocardial infarction in patients with complete occlusion of the left main trunk without collateral circulation: differential diagnosis and clinical considerations. J Electrocardiol. 2012;45(5):487–90.CrossRefGoogle Scholar
  10. 10.
    Engelen DJ, Gorgels AP, Cheriex EC, et al. Value of the electrocardiogram in localizing the occlusion site in the left anterior descending coronary artery in acute anterior myocardial infarction. J Am Coll Cardiol. 1999;34:389–95.CrossRefGoogle Scholar
  11. 11.
    Hindman MC, Wagner GS, JaRo M, et al. The clinical significance of bundle branch block complicating acute myocardial infarction. 1. Clinical characteristics, hospital mortality, and one-year follow-up. Circulation. 1978;58:679–88.CrossRefGoogle Scholar
  12. 12.
    Sgarbossa EB, Pinski SL, Topol EJ, et al. Acute myocardial infarction and complete bundle branch block at hospital admission: clinical characteristics and outcome in the thrombolytic era. J Am Coll Cardiol. 1998;31:105–10.CrossRefGoogle Scholar
  13. 13.
    Harpaz D, Behar S, Gottleib S, Boyko V, Kishon Y, Eldar M. Complete atrioventricular block complicating acute myocardial infarction in the thrombolytic era. J Am Coll Cardiol. 1999;34:1721–8.CrossRefGoogle Scholar
  14. 14.
    Yamaji H, Iwasaki K, Kusachi S, et al. Prediction of acute left main coronary artery obstruction by 12-lead electrocardiography. ST segment elevation in lead aVR with less ST segment elevation in lead V(1). J Am Coll Cardiol. 2001;38(5):1348–54.CrossRefGoogle Scholar
  15. 15.
    Kireyev D, Arkhipov MV, Zador ST, et al. Clinical utility of aVR-The neglected electrocardiographic lead. Ann Noninvasive Electrocardiol. 2010;15:175–80.CrossRefGoogle Scholar
  16. 16.
    Jong GP, Ma T, Chou P, et al. Reciprocal changes in 12-lead electrocardiography can predict left main coronary artery lesion in patients with acute myocardial infarction. Int Heart J. 2006;47:13–20.CrossRefGoogle Scholar
  17. 17.
    Szymański FM, Grabowski M, Filipiak KJ, et al. Admission ST-segment elevation in lead aVR as the factor improving complex risk stratification in acute coronary syndromes. Am J Emerg Med. 2008;26:408–12.CrossRefGoogle Scholar
  18. 18.
    Yan AT, Yan RT, Kennelly BM, GRACE Investigators, et al. Relationship of ST elevation in lead aVR with angiographic findings and outcome in non-ST elevation acute coronary syndromes. Am Heart J. 2007;154:71–8.CrossRefGoogle Scholar
  19. 19.
    Baldi C, Polito MV, Citro R, et al. Prognostic value of clinical, echocardiographic and angiographic indicators in patients with large anterior ST-segment elevation myocardial infarction as a first acute coronary event. J Cardiovasc Med. 2017;18(12):946–53.CrossRefGoogle Scholar
  20. 20.
    Tamura A, Kataoka H, Mikuriya Y, et al. Inferior ST segment depression as a useful marker for identifying proximal left anterior descending artery occlusion during acute anterior myocardial infarction. Eur Heart J. 1995;16:1795–9.CrossRefGoogle Scholar
  21. 21.
    Ricou F, Nicod P, Gilpin E, et al. Influence of right bundle branch block on short- and long-term survival after acute anterior myocardial infarction. J Am Coll Cardiol. 1991;17:858–63.CrossRefGoogle Scholar
  22. 22.
    Oreto G, et al. L’elettrocardiogramma: un mosaico a 12 tessere. Milano: Centro scientifico editore Srl; 2010. p. 139–42.Google Scholar
  23. 23.
    Surawicz B, Knilans T. Chou’s electrocardiography in clinical practice. 6th ed. Philadelphia: Saunders Elsevier; 2008. p. 133–7.Google Scholar
  24. 24.
    Kosuge M, Kimura K, Ishikawa T, et al. New electrocardiographic criteria for predicting the site of coronary artery occlusion in inferior wall acute myocardial infarction. Am J Cardiol. 1998;82:1318–22.CrossRefGoogle Scholar
  25. 25.
    Herz I, Assali AR, Adler Y, et al. New electrocardiographic criteria for predicting either the right and left circumflex artery as the culprit coronary artery in inferior wall acute myocardial infarction. Am J Cardiol. 1997;80:1343–5.CrossRefGoogle Scholar
  26. 26.
    Assali AR, Herz I, Vaturi M, et al. Electrocardiographic criteria for predicting the culprit artery in inferior wall acute myocardial infarction. Am J Cardiol. 1999;84:87–8.CrossRefGoogle Scholar
  27. 27.
    Wong TW, Huang XH, Liu W, et al. New electrocardiographic criteria for identifying the culprit artery in inferior wall acute myocardial infarction-Usefulness of T-wave amplitude ratio in leads II/III and T-wave polarity in the right V5 lead. Am J Cardiol. 2004;94:1168–71.CrossRefGoogle Scholar
  28. 28.
    Birnbaum Y, Hasdai D, Sclarovsky S, et al. Acute myocardial infarction entailing ST-segment elevation in lead aVL: electrocardiographic differentiation among occlusion of the left anterior descending, first diagonal, and first obtuse marginal coronary arteries. Am Heart J. 1996;131:38–42.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Erika Baiocco
    • 1
  • Paolo Compagnucci
    • 1
  • Daniele Contadini
    • 1
  1. 1.Clinica di Cardiologia e AritmologiaUniversità Politecnica delle MarcheAnconaItaly

Personalised recommendations