9 Spatio-Temporal Distribution of Mediterranean Cold-Water Corals

  • Agostina VertinoEmail author
  • Marco Taviani
  • Cesare Corselli
Part of the Coral Reefs of the World book series (CORW, volume 9)


Cold-water corals have inhabited the Mediterranean basin since at least the Miocene, undergoing important modifications through time. Most information regarding pre-Pleistocene occurrences of extant cold-water coral species still relies on ancient literature records in need to be updated according to modern taxonomic and chronostratigraphic concepts. In this chapter, Neogene and Quaternary coral records are discussed. Many occurrences have been revised from the taxonomic point of view through the analysis of historical museum collections, newly collected specimens and original species descriptions and illustrations. In particular, this study summarises the current state of knowledge on Mediterranean frame-building cold-water corals and associated solitary species from the Miocene onwards. Several growth and demise phases, as well as changes in composition of dominant species have been observed so far. A shift from Dendrophyllia- to “Atlantic-like” Lophelia-dominated paleocommunities occurred at the Pliocene – Pleistocene boundary. “Golden ages” for the species Lophelia pertusa, and large bioconstructions formed by this coral, are thus far known in the Early Pleistocene (Calabrian stage), at the boundary Bølling- Allerød – Younger Dryas and in the Early Holocene (at least in the western basin). A large knowledge gap currently exists between the end of the Calabrian stage and the last 50 kyr BP. Several Atlantic deep-sea species (including frame-building and “psychrosperic” cold-water corals), common in the Early Pleistocene, disappeared in the Mediterranean after the Late Pleistocene, but how and when this event occurred is not known yet. Further studies need to be carried out to understand if there is any correlation between this deep-sea basin-scale extinction and the decline of Lophelia-dominated bioconstructions observed in the late Younger-Dryas and after the Early Holocene. In order to fill knowledge gaps on the fossil record of Mediterranean cold-water corals and to fully exploit the valuable potential of these organisms as palaeoenvironmental archives, the setup of a comprehensive open access database, including quality-controlled data on both modern and fossil species, is highly recommended. This would also provide a useful tool for managing, valorising and preserving the unique, yet undervalued paleontological heritage of the Mediterranean regions.


Cold-water coral Mediterranean Neogene Quaternary Deep-sea Bioconstruction 



This chapter is dedicated to the memory of our friend and colleague, Jean-Pierre Henriet, a unique scientist and a special person, whose pioneer studies on CWC mounds have inspired many young academics and promoted important advances in this research field. His endless enthusiasm has been the motor of the COCARDE-ERN (European Research Network) programme, funded by the European Science Foundation, from which the study presented herein greatly benefited. This research is also part of EU F.P. VII Projects COCONET, (contract no. 287844), and EVER-EST (contract no. 674907), DG Environment programme IDEM (grant agreement No 11.0661 /2017/750680/SUB/EN V.C2), and the Flag Project Ritmare (Ricerca Italiana per il Mare) project, and is Ismar-Bologna scientific contribution n. 1938. We are very grateful to Fabio Marchese for providing the georeferenced map of the Mediterranean used as background in Fig. 9.3. We warmly thank Lydia Beuck, Francesca Bosellini, Italo Di Geronimo, André Freiwald, Juergen Titschack, Alessandro Vescogni and Helmut Zibrowius for constructive discussions on the evolution of modern and ancient Mediterranean deep-sea coral environments. We are moreover grateful to Antonietta Rosso, Italo Di Geronimo, Francesca Bosellini, Enzo Burgio, Daniele Ormezzano, Paolo Serventi for help in accessing the fossil scleractinian historical collections in the following Italian repositories: Museum of Paleontology, University of Catania, Museum of Paleobiology and Botanical Garden, University of Modena and Reggio Emilia, “G. Gemmellaro” Museum of Palaeontology and Geology, University of Palermo, Museum of Natural History, Torino University. Marco Sami, Vincenzo Bugnano and Massimo Rocca kindly made available to us a number of Neogene scleractinians. Paolo Montagna and Tim Collart are warmly thanked for useful suggestions regarding the treatment of 14C coral datings. Last but not least, special thanks go to the editors (Covadonga Orejas and Carlos Jiménez) and the reviewers (Antonietta Rosso and Jarek Stolarski) who provided constructive criticism that helped us to improve the manuscript.

Supplementary material

394268_1_En_9_MOESM1_ESM.docx (72 kb)
Appendix 9.1_May2019_Vertino (DOCX 73 kb)
394268_1_En_9_MOESM2_ESM.docx (64 kb)
Ch 9_Appendices 2-3_FullChapter_FINAL_Appendices_27012018_AV (DOCX 65 kb)


  1. Addamo AM, Martínez-Baraldés I, Vertino A, et al (2015a) Morphological polymorphism of Desmophyllum dianthus (Anthozoa: Hexacorallia) over a wide ecological and biogeographic range: stability in deep habitats? Zool Anz 259:113–130Google Scholar
  2. Addamo AM, Vertino A, Stolarski J, et al (2015b) Merging scleractinian genera: the overwhelming genetic similarity between solitary Desmophyllum and colonial Lophelia. BMC Evol Biol 16:108Google Scholar
  3. Angeletti L, Taviani M (2011) Entrapment, preservation and incipient fossilization of benthic predatory molluscs within deep-water coral frames in the Mediterranean Sea. Geobios 44:543–548CrossRefGoogle Scholar
  4. Angeletti L, Taviani M, Canese S, et al (2014) New deep-water cnidarian sites in the southern Adriatic Sea. Mediterr Mar Sci 15:263–273CrossRefGoogle Scholar
  5. Bárcena MA, Cacho I, Abrantes F, et al (2001) Paleoproductivity variations related to climatic conditions in the Alboran Sea (western Mediterranean) during the last glacial-interglacial transition: the diatom record. Palaeogeogr Palaeoclimatol, Palaeoecol 167:337–357CrossRefGoogle Scholar
  6. Barrier P (1984) Évolution tectono-sédimentaire pliocène et pléis- tocène du détroit de Messine. (Italie). Dissertation, University of Marseille-LuminyGoogle Scholar
  7. Barrier P, Casale V, Costa B, et al (1986) La sezione plio-pleistocenica di Pavigliana (Reggio Calabria). Boll Soc Paleontol Ital 25:107–144Google Scholar
  8. Barrier P (1987) Stratigraphie des dépôts pliocènes et quaternaires du Détroit de Messine. Doc Trav IGAL 11:59–81Google Scholar
  9. Barrier P, Di Geronimo I, Montenat C, et al (1989) Présence de faunes bathyales atlantiques dans le Pliocène et le Pléistocène de Méditerranée (détroit de Messine, Italie). Boll Soc Géol France 5:787–796Google Scholar
  10. Barrier P, Zibrowius H, Lozouet P, et al (1991) Une faune de fond dur du bathyal supérieur dans le Miocène terminal des Cordillères Bétiques (Carboneras, SE, Espagne). Mésogée 51:3–13Google Scholar
  11. Barrier P, Di Geronimo I, La Perna R, et al (1996) Taphonomy of deep-sea hard and soft bottom communities: the Pleistocene of Lazzàro (southern Italy). In: Meléndez G, Blasco MF, Pérez I (eds) Communication Reunion de Tafonomia y Fosilización, Zaragoza, 1996Google Scholar
  12. Benson RH (1972) Ostracods as indicators of threshold depth in the Mediterranean during the Pliocene. In: Stanley DJ (ed) The Mediterranean Sea: A Natural Sedimentation Laboratory, pp 63–73Google Scholar
  13. Bronk C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360CrossRefGoogle Scholar
  14. Cacho I, Grimalt JO, Canals M (2002) Response of the Western Mediterranean Sea to rapid climatic variability during the last 50,000 years: a molecular bio- marker approach. J Mar Syst 33–34:253–272CrossRefGoogle Scholar
  15. Cairns SD (2007) Deep-water corals: an overview with special reference to diversity and distribution of deep-water scleractinian corals. Bull Mar Sci 81:311–322Google Scholar
  16. Caldara M, Ciaranfi N, Marino M (1993) I depositi Plio-Pleistocenici al bordo dell’Appenino Meridionale tra Oliveto Lucano e Garaguso (Basilicata). Boll Soc Geol Ital 112:893–908Google Scholar
  17. Cantalamessa G, Centamore E, Cristallini C, et al (1987) Nuovi dati sulla Geologia dell’area di Porto S. Giorgio (Ascoli Piceno, Marche). Geol Rom 26:359–369Google Scholar
  18. Cantalamessa G, Didaskalou P, Micarelli A, et al (1997) Depositional environments and microfaunal associations in the Sicilian of the Periadriatic Marche Basin (Central Italy). Boll Soc Paleontol Ital 36:123–134Google Scholar
  19. Cau S, Franchi F, Roveri M, et al (2015) The Pliocene-age Stirone River hydrocarbon chemoherm complex (Northern Apennines, Italy). Mar Pet Geol 66:582–595CrossRefGoogle Scholar
  20. Chevalier JP (1961) Récherches sur les Madréporaires et les formations récifales Miocene de la Méditerranée occidentale. Mém Soc Géol Fr 40:1–562Google Scholar
  21. Chevalier JP (1962) Les Madréporaires du Pliocène dʼOrosei (Nuoro, Sardaigne). Bull Soc Géol France 3:266–270Google Scholar
  22. Corselli C (1997) Il mare in fondo al pozzo: i fossili pliocenici del Pozzo Bagoderi di Malnate. Quaderni del sistema museale Alta Valle Olona, Varese, 77 ppGoogle Scholar
  23. Corselli C (2001) Change and diversity: the Mediterranean deep corals from the Miocene to the Present. In: Faranda FM, Guglielmo L, Spezie G (eds) Mediterranean ecosystems: structures and processes. Springer, Geneva, pp 361–366CrossRefGoogle Scholar
  24. Corselli C (2010) The APLABES programme: physical chemical and biological characterization of deep water coral ecosystems from the Ionian Sea (Mediterranean). Deep-Sea Res Part 2 Top Stud Oceanogr, 99, 0–169Google Scholar
  25. De Angelis G (1893) I zoantari fossili dei dintorni di Roma. Boll Soc Geol Ital 12:1–25Google Scholar
  26. De Angelis G (1894) I Corallari dei terreni terziari dell’Italia settentrionale, Collezione Michelotti, Museo Geologico della Regia Università di Roma. Atti R Accad Lincei Sci Fis Nat 1:164–280Google Scholar
  27. De Angelis G (1895) Descripción de los Antozoos fósiles pliocénicos de Cataluña. Mem R Accad Cienc Artes Barcelona 3:1–25Google Scholar
  28. De Stefano G (1899) Le argille a Coenopsammia scillae Seguenza e le sabbie marine della contrada Corvo in Reggio di Calabria. Atti Accad Gioenia Sci Nat, Ser 4:12: 1–12: 9Google Scholar
  29. Delibrias G, Taviani M (1985) Dating the death of Mediterranean deep-sea scleractinian corals. Mar Geol 62:175–180CrossRefGoogle Scholar
  30. Di Geronimo I (1979) Il Pleistocene in facies batiale di Valle Palione (Grammichele, Catania). Boll Malacol 15:85–156Google Scholar
  31. Di Geronimo I (1987) Bionomie des peuplements benthiques des substrats meubles et rocheux plio-quaternaires du Détroit de Messine. Doc Trav IGAL 11:153–169Google Scholar
  32. Di Geronimo I, La Perna R, Rosso A (1996) The plio-quaternary evolution of the Mediterranean deep sea benthos: an outline. In: La Méditerranée: variabilités climatiques, environnement et biodiversité, Actes du Colloque Scientifique, Montpellier, 6–7 Avril 1995Google Scholar
  33. Di Geronimo I, D’atri A, La Perna R, et al (1997) The Pleistocene bathyal section of Archi (Southern Italy). Boll Soc Paleontol Ital 36:189–212Google Scholar
  34. Di Geronimo I, Messina C, Rosso A, et al (2005) Enhanced biodiversity in the deep: early pleistocene coral communities from southern Italy. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Heidelberg, Berlin, pp 61–86Google Scholar
  35. Di Stefano A, Longhitano SG (2009) Tectonics and sedimentation of the Lower and Middle Pleistocene mixed siliciclastic/bioclastic sedimentary successions of the Ionian Peloritani Mts (NE Sicily, Southern Italy): the onset of opening of the Messina Strait. Cent Eur J Geosci.
  36. Dieni J, Omenetto P (1960) Studio di una macrofauna del Pliocene inferiore di Orosei. Riv Ital Paleontol 66:605–618Google Scholar
  37. Dubois-Dauphin Q, Bonneau L, Colin C, et al (2016) South Atlantic intermediate water advances into the North-east Atlantic with reduced Atlantic meridional overturning circulation during the last glacial period. Geochem Geophys Geosyst 17:2336–2353CrossRefGoogle Scholar
  38. Dubois-Dauphin Q, Montagna P, Siani G, et al (2017) Hydrological variations of the intermediate water masses of the western Mediterranean Sea during the past 20 ka inferred from neodymium isotopic composition in foraminifera and cold-water corals. Climate Past 13:17–37CrossRefGoogle Scholar
  39. Fink H, Wienberg C, Hebbeln D, et al (2012) Oxygen control on Holocene cold-water coral development in the Mediterranean Sea. Deep-Sea Res Part 1 Oceanogr Res Pap 62:89–96CrossRefGoogle Scholar
  40. Fink H, Wienberg C, De Pol-Holz R, et al (2013) Cold-water coral growth in the Alborán Sea related to high productivity during the Late Pleistocene and Holocene. Mar Geol 2013 339:71–82CrossRefGoogle Scholar
  41. Fink HG, Wienberg C, De Pol-Holz R, et al (2015) Spatio-temporal distribution patterns of Mediterranean cold-water corals (Lophelia pertusa and Madrepora oculata) during the past 14,000 years. Deep-Sea Res Part 1 Oceanogr Res Pap 103:37–48CrossRefGoogle Scholar
  42. Föllmi KB, Hofmann H, Chiaradia M, et al (2015) Miocene phosphate-rich sediment in Salento (southern Italy). Sediment Geol 327:55–71CrossRefGoogle Scholar
  43. Fourt M, Goujard A, Pérez T, et al (2017) Guide de la faune profonde de la mer Méditerranée. Museum National d’Histoire Naturelle, Paris, p 184Google Scholar
  44. Frank N, Freiwald A, Lopez Correa M, et al (2011) Northeastern Atlantic cold-water coral reefs and climate. Geology 39:743–746CrossRefGoogle Scholar
  45. Freiwald A, Fosså JH, Grehan A, et al (2004) Cold-water coral reefs. UNEP-WCMC Biodiversity Series 22. Cambridge, UKGoogle Scholar
  46. Freiwald A, Beuck L, Rüggeberg A, et al (2009) The white coral community in the central Mediterranean revealed by ROV surveys. Oceanography 22:58–74CrossRefGoogle Scholar
  47. Hanken NM, Bromley RG, Miller J (1996) Plio–Pleistocene sedimentation in coastal grabens, north-east Rhodes, Greece. Geol J 31:271–296CrossRefGoogle Scholar
  48. Hebbeln D, Wienberg C, Frank N (2015) The development of cold-water coral mounds along the Moroccan Atlantic and Mediterranean margins revealed by MeBo drillings. In: Abstracts of the EGU General Assembly, Vienna, 12–17 April 2015Google Scholar
  49. Henry LA, Roberts M (2016) Global biodiversity in cold-water coral reef ecosystems. In: Rossi S, Bramanti L, Gori A, Orejas C (eds) Marine animal forests, pp 1–21Google Scholar
  50. Hersey JB (1965) Sedimentary basins of the Mediterranean Sea. In: Whitard WF, Bradshaw W (eds) Submarine geology and geophysics. Proceedings of 17th symposium of the Colston Research Society, London, pp 75–91Google Scholar
  51. Jimenez-Espejo FJ, Martinez-Ruiz F, Rogerson M, et al (2008) Detrital input, productivity fluctuations, and water mass circulation in the westernmost Mediterranean Sea since the last glacial maximum. Geochem Geophys Geosyst 9:1–19. CrossRefGoogle Scholar
  52. Kiel S, Sami M, Taviani M (2018) A serpulid-Anodontia-dominated methane-seep deposit from the Miocene of northern Italy. Acta Palaeontol Pol
  53. Krengel T, Wienberg C, Eichstaedter C, et al (2017) Climate-related formation of coldwater coral mounds in the Alborán Sea since the mid-Pleistocene transition. In: Abstracts of the GOLDSCHMIDT 2017, Paris, 13–18 August 2017Google Scholar
  54. Lo Iacono C, Gracia E, Ranero C, et al (2014a) The West Melilla cold water coral mounds, Eastern Alborán Sea: morphological characterization and environmental context. Deep-Sea Res Part 2 Top Stud Oceanogr 99:316–326CrossRefGoogle Scholar
  55. Lo Iacono C, Gonzalez LV, Huvenne VAI, et al (2014b) Morphology and shallow stratigraphy of the West Melilla and Cabliers CWC Mounds (Alborán Sea). Preliminary insights from the GATEWAYS MD194 Cruise. In: Abstracts of the 2nd deep-water circulation congress, Ghent, 10–12 September 2014Google Scholar
  56. Lo Iacono C, Huvenne VAI, Gonzalez LV, et al (2016) Living reefs and CWC mounds in the Alborán Sea (Western Mediterranean). Holocene evolution and present-day conditions. In: Abstracts of the 6th international symposium on deep-sea corals, September 2016, Boston, pp 11–16Google Scholar
  57. Malinverno E, Taviani M, Rosso A, et al (2010) Stratigraphic framework of the Apulian deep-water coral province, Ionian Sea. Deep-Sea Res Part 2 Top Stud Oceanogr 57:345–359CrossRefGoogle Scholar
  58. Mastandrea A, Muto F, Neri C, et al (2002) Deep-water coral banks: an example from the “Calcare di Mendicino” (Upper Miocene, Northern Calabria, Italy). Facies 47:27–42CrossRefGoogle Scholar
  59. Mastrototaro F, D’Onghia G, Corriero G, et al (2010) Biodiversity of the white coral ecosystem off Cape Santa Maria di Leuca (Mediterranean Sea): an update. Deep-Sea Res Part 2 Top Stud Oceanogr 57:412–430CrossRefGoogle Scholar
  60. McCulloch M, Taviani M, Montagna P, et al (2010) Proliferation and demise of deep-sea corals in the Mediterranean during the Younger Dryas. Earth Planet Sci Lett 298:143–152CrossRefGoogle Scholar
  61. Moissette P, Cornée JJ, Quillévéré F (2017) Pleistocene (Calabrian) deep-water corals and associated biodiversity in the eastern Mediterranean (Karpathos Island, Greece). J Quat Sci. CrossRefGoogle Scholar
  62. Monegatti P, Raffi S, Roveri M, et al (2001) One day trip in the outcrops of Castell’Arquato Plio-Pleistocene Basin: from the Badland of Monte Giogo to the Stirone River. In: Monegatti P, Cecca F, Raffi S (eds) Proocedings of the international conference paleobiogeography & paleoecology, Piacenza e Castell’Arquato, 2001Google Scholar
  63. Montanaro E (1929) Coralli tortoniani di Montegibbio (Modena). Boll Soc Geol Ital 48:107–127Google Scholar
  64. Montanaro E (1931) Coralli pliocenici dell’Emilia. Palaeontogr Ital 31:63–91Google Scholar
  65. Osasco E (1895) Di alcuni corallari pliocenici del Piemonte e della Liguria. Atti R Accad Sci Torino 31:225–238Google Scholar
  66. Pérès JM, Picard J (1964) Nouveau manuel de bionomie benthique de la Méditerranée. Rec Trav Stat mar Endoume 31:137Google Scholar
  67. Placella B (1978) Nuove osservazioni sulla corallofauna delle argille pleistoceniche di Archi (Reggio Calabria). Boll Soc Nat Napoli 87:1–23Google Scholar
  68. Placella B (1980) I coralli pliocenici di Masseria Concarone – Pisticci (Mt). Boll Soc Nat Napoli 89:19–32Google Scholar
  69. Reimer PJ, Bard E, Bayliss A, et al (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):1869–1887CrossRefGoogle Scholar
  70. Roberts JM, Wheeler A, Freiwald A, et al (2009) Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press, New York, p 334.
  71. Robinson LF, Adkins JF, Frank NA, et al (2014) The geochemistry of deep-sea coral skeletons: a review of vital effects and applications for palaeoceanography. Deep-Sea Res Part 1 Oceanogr Res Pap 99:184–198CrossRefGoogle Scholar
  72. Rosso A, Vertino A, Di Geronimo I, et al (2010) Hard- versus soft-bottom thanatofacies from the Santa Maria di Leuca deep-water coral province, recent Mediterranean. Deep-Sea Res Part 2 Top Stud Oceanogr 57:360–379CrossRefGoogle Scholar
  73. Roux M, Barrier P, Di Geronimo I, et al (1988) Découverte de Crinoïdes pédonculés bathyaux d’origine atlantique dans le Pliocène supérieur et le Pleistocène moyen méditerranéen: conséquences biogéographiques. C R Acad Sci Paris 307:259–364Google Scholar
  74. Russo A (1980) The psychrospheric coral fauna from the lower Pliocene of northern Italy. Acta Palaeont Pol 25:614–617Google Scholar
  75. Savini A, Corselli C (2010) High-resolution bathymetry and acoustic geophysical data from Santa Maria di Leuca Cold Water Coral province (northern Ionian Sea-Apulian continental slope). Deep-Sea Res Part 2 Top Stud Oceanogr 57:326–344CrossRefGoogle Scholar
  76. Savini A, Vertino A, Beuck L, et al (2014) Mapping cold-water coral habitats at different scales within the northern Ionian Sea (central Mediterranean): an assessment of coral coverage and associated vulnerability. PLoS One 9:e91447. CrossRefGoogle Scholar
  77. Schröder-Ritzrau A, Freiwald A, Mangini A (2005) U/Th-dating of deep-water corals from the eastern North Atlantic and the western Mediterranean Sea. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Heidelberg, Berlin, pp 691–700Google Scholar
  78. Schumacher H, Zibrowius H (1985) What is hermatypic? A redefinition of ecological groups in corals and other organisms. Coral Reefs 4:1–9CrossRefGoogle Scholar
  79. Seguenza G (1864) Disquisizioni paleontologiche intorno ai Corallarii fossili delle rocce terziarie del distretto di Messina. Mem R Acc Sci Torino (Ser 2) 21:399–560Google Scholar
  80. Seguenza G (1880) La formazione terziaria nella provincia di Reggio (Calabria). Atti R Accad Lincei Sci Fis Nat 6:1–446Google Scholar
  81. Siani G, Paterne M, Michel E, et al (2001) Mediterranean sea surface radiocarbon reservoir age changes since the last glacial maximum. Science 294(5548):1917–1920CrossRefGoogle Scholar
  82. Simonelli V (1895) Gli Antozoi pliocenici del Ponticello di Savena presso Bologna. Paleont Ital 1:149–168Google Scholar
  83. Simonelli V (1896) Antozoi neogenici del Museo Parmense. Paleont Ital 2:185–201Google Scholar
  84. Sismonda E (1871) Matériaux pour servir à la paléontologie du terrain tertiaire du Piémont. Memorie della Reale Accademia delle scienze di Torino, vol 2, pp 257–361Google Scholar
  85. Spadini (2015) Sclerattiniari del Pliocene senese (Cnidaria, Anthozoa). Accademia delle Scienze di Siena detta dei Fisiocratici, p 159Google Scholar
  86. Stalder C, Vertino A, Rosso A, et al (2015) Microfossils, a key to unravel cold-water carbonate mound evolution through time: evidence from the Eastern Alborán Sea. PLoS One 10:e0140223. CrossRefGoogle Scholar
  87. Stolarski J, Vertino A (2007) First Mesozoic record of the scleractinian Madrepora from the Maastrichtian siliceous limestones of Poland. Facies 53:67–78CrossRefGoogle Scholar
  88. Taviani M (2002) The Mediterranean benthos from late Miocene up to present: ten million years of dramatic climatic and geologic vicissitudes. Biol Mar Medit 9:445–463Google Scholar
  89. Taviani M, Colantoni P (1984) Paléobiocenoses profondes a scléractiniaires sur l’escarpement de Malte-Syracuse (Mer Méditerranée): leur structure, leur âge et leur signification. Rev Inst Fr Pétr 39:547–552CrossRefGoogle Scholar
  90. Taviani M, Corselli C, Remia A, et al (2005a) First geo-marine survey of living cold-water Lophelia reefs in the Ionian Sea (Mediterranean basin). Facies 50:409–417Google Scholar
  91. Taviani M, Freiwald A, Zibrowius H (2005b) Deep-coral growth in the Mediterranean Sea: an overview. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Heidelberg, Berlin, pp 137–156Google Scholar
  92. Taviani M, Vertino A, López-Correa M, et al (2011) Pleistocene to Recent scleractinian deep-water corals and coral facies in the Eastern Mediterranean. Facies 57:579–603CrossRefGoogle Scholar
  93. Taviani M, Angeletti L, Canese S, et al (2017) The “Sardinian cold-water coral province” in the context of the Mediterranean coral ecosystems. Deep-Sea Res Part 2 Top Stud Oceanogr 145:61–78CrossRefGoogle Scholar
  94. Titschack J, Freiwald A (2005) Growth, deposition, and facies of Pleistocene bathyal coral communities from Rhodes, Greece. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Heidelberg, Berlin, pp 41–59Google Scholar
  95. Titschack J, Nelson CS, Beck T (2008) Sedimentary evolution of a late Pleistocene temperate red algal reef (Coralligène) on Rhodes, Greece: correlation with global sea-level fluctuations. Sedimentology 55:1747–1776CrossRefGoogle Scholar
  96. Titschack J, Fink HG, Baum D, et al (2016) Mediterranean cold-water corals–an important regional carbonate factory? Depositional Rec 2:74–96CrossRefGoogle Scholar
  97. Vertino A (2003) Sclerattiniari plio-pleistocenici ed attuali del Mediterraneo. PhD dissertation, University of MessinaGoogle Scholar
  98. Vertino A, Savini A, Rosso A, et al (2010) Benthic habitat characterization and distribution from two representative sites of the deep-water SML Coral Province (Mediterranean). Deep-Sea Res Part 2 Top Stud Oceanogr 57:380–396CrossRefGoogle Scholar
  99. Vertino A, Titschack J, Rosso A, et al (2013) Messina Strait: CWC Pleistocene deposits from “La Montagna” (Messina). In: Vertino A, Basso D, Rosso A (eds) Field seminar guide book. Proceedings of the COCARDE-ERN Workshop and Field Seminar, Sicily, 2013Google Scholar
  100. Vertino A, Stolarski J, Bosellini FR, et al (2014) Mediterranean corals through time: from Miocene to present. In: Goffredo S, Dubinsky Z (eds) The Mediterranean Sea: its history and present challenges. Springer, Dordrecht, pp 257–274CrossRefGoogle Scholar
  101. Vertino A, Spezzaferri S, Rueggeberg A, et al (2015) An overview on cold-water coral ecosystems and facies. In: Spezzaferri S, Rueggeberg A, Stalder C (eds) Atlas of benthic foraminifera from cold-water coral reefs. Cushman Foundation Special Publication, vol 44, pp 12–19Google Scholar
  102. Vescogni A, Vertino A, Bosellini F, et al (2018) New paleoenvironmental insights on the Miocene condensed phosphatic layer of Salento (southern Italy) unlocked by the coral-mollusc fossil archive. Facies 64.
  103. Wienberg C, Titschack J (2017) Framework-forming scleractinian cold-water corals through space and time: a late Quaternary North Atlantic perspective. In: Rossi S, Bramanti L, Gori A et al (eds) Marine animal forests: the ecology of benthic biodiversity hotspots. Springer, Cham, pp 699–732Google Scholar
  104. World Register of Marine Species (2017) at VLIZ. Accessed Jan 2018
  105. Zibrowius H (1980) Les Scléractiniaires de la Méditerranée et de l’Atlantique nord-oriental. Mém Inst Océanogr Monaco 11:0–284Google Scholar
  106. Zibrowius H (1981) Thanatocoenose pléistocène profonde à Spongiaires et Scléractiniaires dans la Fosse Hellenique. In: Journées d’études sur la systérnatique évolutive et la biogéographie en Méditerranée, 27th CIESM, Cagliari, 1980Google Scholar
  107. Zibrowius H (1987) Scléractiniaires et Polychètes Serpulidae des faunes bathyales actuelle et plio-pléistocène de Méditerranée. Doc et Trav IGAL 11:255–257Google Scholar
  108. Zuffardi-Comerci R (1927) Faunetta di corallari pliocenici dell’isola di Rodi. Atti R Acad Sci Torino 63:231–237Google Scholar
  109. Zuffardi-Comerci R (1932) Corallari-Zoantari fossili del Miocene della “Collina di Torino”. Paleont Ital 23:86–132Google Scholar
  110. Zuffardi-Comerci R (1937) Contributo dato dai corallari – durante i periodi geologici – alla formazione dei terreni calcarei d’Italia. Riv Ital Paleontol Stratigr 43:9–35Google Scholar
  111. Zunino M, Pavia G (2009) Lower to Middle Miocene molluscan assemblages from the Torino Hills (NW Italy): synthesis of new data and chronostratigraphical arrangement. Riv Ital Paleontol 66:349–370Google Scholar

Cross References

  1. Addamo AM (this volume) Desmophyllum dianthus genetics and moreGoogle Scholar
  2. Altuna A, Poliseno A (this volume) Taxonomy, genetics and biodiversity of Mediterranean deep-sea corals and cold-water coralsGoogle Scholar
  3. Angeletti L, Bettuzzi M, Morigi MP (this volume) Tomography of cold-water corals – bearing coresGoogle Scholar
  4. Aymà A, Aguzzi J, Canals M, et al (this volume) Occurrence of living cold-water corals at large depths within submarine canyons of the northwestern Mediterranean SeaGoogle Scholar
  5. Chimienti G, Bo M, Taviani M, et al (this volume) Occurrence and biogeography of Mediterranean cold-water coralsGoogle Scholar
  6. Fourt M, Goujard A, Chevaldonné P (this volume) Working with visual methods, comparison among the French deep-sea canyonsGoogle Scholar
  7. Freiwald A (this volume) Messinian salinity crisis: what happened to cold-water corals?Google Scholar
  8. Hayes D, Schroeder K, Poulain PM, et al (this volume) Review of the circulation and characteristics of intermediate water masses of the Mediterranean – implications for cold-water coral habitatsGoogle Scholar
  9. Lastras G, Sanchez-Vidal A, Canals M (this volume) A cold-water coral habitat in La Fonera submarine canyon, northwestern Mediterranean SeaGoogle Scholar
  10. Montagna P, Taviani M (this volume) Mediterranean cold-water corals as paleoclimate archivesGoogle Scholar
  11. Otero M, Marin P (this volume) Conservation of cold-water corals in the Mediterranean: current status and future prospects for improvementGoogle Scholar
  12. Rueda JL, Urra J, Aguilar R, et al (this volume) Cold-water coral associated fauna in the Mediterranean Sea and adjacent areas.Google Scholar
  13. Taviani M, Vertino A, Angeletti L, et al (this volume) Paleoecology of cold-water corals in the MediterraneanGoogle Scholar
  14. Titschack J (this volume) Bathyal corals within the Aegean Sea and the adjacent Hellenic trenchGoogle Scholar
  15. Vertino A, Corselli C (this volume) Did quaternary climate oscillations affect Mediterranean cold-water coral communities?Google Scholar
  16. Weinbauer MG, Oregiani D, Grosskurth A, et al (this volume) Diversity and biogeography of bacteria associated with the cold-water corals Lophelia pertusa and Madrepora oculata: Mediterranean Sea vs NE AtlanticGoogle Scholar
  17. Wienberg C (this volume) A deglacial cold-water coral boom in the Alboran Sea: from coral mounds and species dominanceGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Agostina Vertino
    • 1
    • 2
    Email author
  • Marco Taviani
    • 3
    • 4
    • 5
  • Cesare Corselli
    • 1
  1. 1.CONISMA Local Research Unit (LRU) of Milano-Bicocca, Department of Earth and Environmental SciencesMilano-Bicocca UniversityMilanItaly
  2. 2.Department of Geology, Renard Centre of Marine GeologyGhent UniversityGhentBelgium
  3. 3.Institute of Marine Sciences (ISMAR-CNR)BolognaItaly
  4. 4.Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleUSA
  5. 5.Stazione Zoologica Anton DohrnNaplesItaly

Personalised recommendations