5 Messinian Salinity Crisis: What Happened to Cold-Water Corals?

  • André FreiwaldEmail author
Part of the Coral Reefs of the World book series (CORW, volume 9)


The fate of bathyal coral communities prior, during and after the environmentally devastating Messinian Salinity Crisis is briefly reviewed. The Messinian Salinity Crisis has created a geologically short-termed but massive disruption to marine life in the Late Miocene Mediterranean Sea. First signs of deteriorating environmental conditions begun about 7.15 Ma ago with a successive reduction of water mass exchange between the open Atlantic Ocean the Mediterranean Sea and progressively diminishing deep-water ventilation in the remaining Mediterranean basins. The resulting deposition of three massive evaporite sequences causes a vivid debate until today on the degree of desiccation ranging from a complete dry-out to a much milder course of events in the Late Miocene marine realm. The sudden marine reflooding via the newly formed Gibraltar gateway at 5.33 Ma abruptly terminated the ecological crisis and gave way to fully marine conditions in the Mediterranean Sea. The preservation and the fate of bathyal corals during this event is fragmentary and still understudied. Existing knowledge indicate that most of the bathyal coral genera and species are present or re-appeared in the Early Pliocene (Zanclean) and that major losses in species richness appeared much later during the advent of the Pliocene.


Cold-water corals Messinian salinity crisis Miocene Pliocene Bathyal 


  1. Barrier P, Zibrowius H, Lozouet P, et al (1991) Une faune de fond dur du bathyal supérieur dans le Miocène Terminal des Cordillères Bétiques (Carboneras, SE Espagne). Mésogée 51:3–13Google Scholar
  2. Blanc-Valleron MM, Pierre C, Caulet JP, et al (2002) Sedimentary, stable isotope and micropaleontological records of paleoceanographic change in the Messinian Tripoli formation (Sicily, Italy). Palaeogeogr Palaeoclimatol Palaeoecol 185:255–286CrossRefGoogle Scholar
  3. Carnevale G, Landini W, Sarti G (2006) Mare versus Lago-mare: marine fishes and the Mediterranean environment at the end of the Messinian salinity crisis. J Geol Soc 163:75–80CrossRefGoogle Scholar
  4. Carnevale G, Longinelli A, Caputo D, et al (2008) Did the Mediterranean marine reflooding precede the Mio–Pliocene boundary? Paleontological and geochemical evidence from upper Messinian sequences of Tuscany, Italy. Palaeogeogr Palaeoclimatol Palaeoecol 257:81–105CrossRefGoogle Scholar
  5. CIESM (2008) The Messinian salinity crisis from mega-deposits to microbiology. In: Briand F (ed) A consensus report, CIESM workshop monographs 33Google Scholar
  6. Corselli C (2001) Change and diversity: the Mediterranean deep corals from the Miocene to the present. In: Faranda FM, Guglielmo L, Spezie G (eds) Mediterranean ecosystems: structures and processes. Springer, Milano, pp 361–366CrossRefGoogle Scholar
  7. Dela Pierre F, Bernardi E, Cavagna S, et al (2011) The record of the Messinian salinity crisis in the tertiary Piedmont Basin (NW Italy): the Alba section revisited. Palaeogeogr Palaeoclimatol Palaeoecol 310:238–255CrossRefGoogle Scholar
  8. Flecker R, de Villiers S, Ellam RM (2002) Modelling the effect of evaporation on the salinity– 87Sr/86Sr relationship in modern and ancient marginal-marine systems: the Mediterranean Messinian salinity crisis. Earth Planet Sci Lett 203:221–233CrossRefGoogle Scholar
  9. Grunert P, Harzhauser M, Rosenthal Y, et al (2016) Estuarine Lago Mare fauna from the tertiary Piedmont Basin indicates episodic Atlantic/Mediterranean exchange during the final stage of the Mediterranean salinity crisis. Palaeogeogr Palaeoclimatol Palaeoecol 457:70–79CrossRefGoogle Scholar
  10. Hsü KJ, Ryan WBF, Cita MB (1973) Late Miocene desiccation of the Mediterranean. Nature 242:240–244CrossRefGoogle Scholar
  11. Kouwenhoven TJ, Hilgen FJ, Van der Zwaan GJ (2003) Late Tortonian – early Messinian stepwise disruption of the Mediterranean-Atlantic connections: constraints from benthic foraminiferal and geochemical data. Palaeogeogr Palaeoclimatol Palaeoecol 198:303–319CrossRefGoogle Scholar
  12. Krijgsman W, Hilgen FJ, Raffi I, et al (1999) Chronology, causes, and progression of the Messinian salinity crisis. Nature 400:652–655CrossRefGoogle Scholar
  13. Manzi V, Lugli S, Roveri M, et al (2009) A new facies model for the upper gypsum of Sicily (Italy): chronological and paleoenvironmental constraints for the Messinian salinity crisis in the Mediterranean. Sedimentology 56:1937–1960CrossRefGoogle Scholar
  14. Manzi V, Gennari R, Hilgen F, et al (2013) Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova 25:315–322CrossRefGoogle Scholar
  15. Mastandrea A, Muto F, Neri R, et al (2002) Deep-water coral banks: an example from the “Calcare di Mendicino” (upper Miocene, northern Calabria, Italy). Facies 47:27–42CrossRefGoogle Scholar
  16. Montenat C, Ott d’Estevou P, Leyrit H, et al (2000) The Brèche rouge of Carboneras. An example of late Miocene volcanic megabreccia deposited in a deep-marine basin controlled by wrench tectonics (Eastern Betics, Spain). In: Leyrit H, Montenat C (eds) Volcaniclastic rocks from magmas to sediments. CRC Press, Boca Raton, pp 193–215Google Scholar
  17. Roveri M, Bertini A, Cosentino D, et al (2008) A high-resolution stratigraphic framework for the latest Messinian events in the Mediterranean area. Stratigraphy 5:323–342Google Scholar
  18. Roveri M, Flecker R, Krijgsman W, et al (2014a) The Messinian salinity crisis: past and future of a great challenge for marine sciences. Mar Geol 352:25–58CrossRefGoogle Scholar
  19. Roveri M, Manzi V, Bergamasco A, et al (2014b) Dense shelf water cascading and Messinian canyons: a new scenario for the Mediterranean salinity crisis. Am J Sci 314:751–784CrossRefGoogle Scholar
  20. Roveri M, Lugli S, Manzi V, et al (2014c) High-resolution strontium isotope stratigraphy of the Messinian deep Mediterranean basins: implications for marginal to central basins correlation. Mar Geol 349:113–125CrossRefGoogle Scholar
  21. Roveri M, Gennari G, Lugli S, et al (2016) The Messinian salinity crisis: open problems and possible implications for Mediterranean petroleum systems. Pet Geosci 22:283–290CrossRefGoogle Scholar
  22. Russo A (1980) The psychrospheric coral fauna from the lower Pliocene of northern Italy. Acta Palaeontol Pol 25:613–617Google Scholar
  23. Seidenkrantz MS, Kouwenhoven TJ, Jorissen FJ, et al (2000) Benthic foraminifera as indicators of changing Mediterranean–Atlantic water exchange in the late Miocene. Mar Geol 163:387–407CrossRefGoogle Scholar
  24. Selli R (1954) Il Bacino del Metauro Giornale di Geologia 24:1–294Google Scholar
  25. Sierro FJ, Flores JA, Francés G, et al (2003) Orbitally controlled oscillations in planktic communities and cyclic changes in western Mediterranean hydrography during the Messinian. Palaeogeogr Palaeoclimatol Palaeoecol 190:289–316CrossRefGoogle Scholar
  26. Taviani M, Freiwald A, Zibrowius H (2005) Deep coral growth in the Mediterranean Sea: an overview. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 137–156Google Scholar
  27. Vai GB (2016) Over half a century of Messinian salinity crisis. Bol Geol Min 127:625–641Google Scholar
  28. Vertino A, Stolarski J, Bosellini FR, et al (2014) Mediterranean corals through time: from Miocene to present. In: Goffredo S, Dubinsky Z (eds) The Mediterranean Sea: its history and present challenges. Springer, Dordrecht, pp 257–274CrossRefGoogle Scholar

Cross Reference

  1. Vertino A, Taviani M, Corselli C (this volume) Spatio-temporal distribution of Mediterranean cold-water coralsGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Meeresforschung, Senckenberg am MeerWilhelmshavenGermany

Personalised recommendations