Advertisement

42 The Mediterranean Is Getting Saltier: From the Past to the Future

  • Nikolaos SklirisEmail author
Chapter
Part of the Coral Reefs of the World book series (CORW, volume 9)

Abstract

The Mediterranean region is getting drier. Evaporation has been steadily increasing over the last few decades driven by the rapid surface warming implying an increase of latent heat loss from the sea surface. A long-term decrease of river freshwater discharge has been also observed since the early 1960s, reflecting the impact of both river damming and recent climate change. As a result of the net evaporation increasing rate, the salt content of the basin has been also strongly increasing over the last four to five decades with this salinification signal rapidly travelling from the surface into the deep layers via the intense Mediterranean overturning circulation. Long-term increases were also observed in the salinity of the Levantine Intermediate Water layer throughout the basin, which strongly influences cold-water coral habitats and distribution. Climate models predict that the present warming and salinification trends will be accelerated over this century and they are expected to have strong impacts on marine ecosystems and biodiversity.

Keywords

Mediterranean Sea Salinity Water cycle Evaporation River runoff Cold-water corals 

References

  1. Adloff F, Somot S, Sevault F, et al (2015) Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Clim Dyn 45:2775–2802.  https://doi.org/10.1007/s00382-015-2507-3 CrossRefGoogle Scholar
  2. Belkin M (2009) Rapid warming of Large Marine Ecosystems. Progr Oceanogr 81: 207–213CrossRefGoogle Scholar
  3. Bethoux JP, Gentili B (1999) Functioning of the Mediterranean Sea: past and present changes related to freshwater input and climate changes. J Mar Syst 20:33–47CrossRefGoogle Scholar
  4. Borghini M, Bryden H, Schroeder K, et al (2014) The Mediterranean is becoming saltier. Ocean Sci 10:693–700CrossRefGoogle Scholar
  5. Cartes JE, Maynou F, Fanelli E (2011) Nile damming as plausible cause of extinction and drop in abundance of deep-sea shrimp in the western Mediterranean over broad spatial scales. Progr Oceanogr 91:286–294CrossRefGoogle Scholar
  6. Cartes JE, Fanelli E, Lloris D, et al (2013) Effect of environmental variations on sharks and other top predators in the deep Mediterranean Sea over the last 60 years. Clim Res 55:239–251.  https://doi.org/10.3354/cr01137 CrossRefGoogle Scholar
  7. Cook BI, Anchukaitis KJ, Touchan R, et al (2016) Spatiotemporal drought variability in the Mediterranean over the last 900 years. J Geophys Res Atmos 121:2060–2074.  https://doi.org/10.1002/2015JD023929 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Curry R, Dickson B, Yashayaev I (2003) A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature 426:826–828CrossRefGoogle Scholar
  9. Durack PJ, Wijffels SE (2010) Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J Clim 23:4342–4362CrossRefGoogle Scholar
  10. Durack PJ, Wijffels SE, Matear RJ (2012) Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336:455–458.  https://doi.org/10.1126/science.1212222 CrossRefGoogle Scholar
  11. Emeis KC, Struck U, Schulz HM, et al (2000) Temperature and salinity variations of Mediterranean Sea surface waters over the last 16,000 years from records of planktonic stable oxygen isotopes and alkenone unsaturation ratios. Palaeogeogr Palaeoclimatol Palaeoecol 158:259–280CrossRefGoogle Scholar
  12. Ferrier-Pagès C, Gattuso JP, Jaubert J (1999) Effect of small variations in salinity on the rates of photosynthesis and respiration of the zooxanthellate coral Stylopora pistillata. Mar Ecol Progr Ser 181:309–314CrossRefGoogle Scholar
  13. Gegner HM, Ziegler M, Rädecker N, et al (2017) High salinity conveys thermotolerance in the coral model Aiptasia. Biol Open: bio.028878.  https://doi.org/10.1242/bio.028878 CrossRefGoogle Scholar
  14. Giorgi F (2006) Climate change hot spots. Geophys Res Lett 33:L08707.  https://doi.org/10.1029/2006GL025734 CrossRefGoogle Scholar
  15. Good SA, Martin MJ, Rayner NA (2013) Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J Geophys Res Oceans 118:6704–6716CrossRefGoogle Scholar
  16. Hegerl G, Black E, Alan RP, et al (2015) Challenges in quantifying changes in the global water cycle. Bull Am Meteor Soc 96:1097–1115.  https://doi.org/10.1175/BAMS-D-13-00212.1 CrossRefGoogle Scholar
  17. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699CrossRefGoogle Scholar
  18. Henry LA, Frank N, Hebbeln D, et al (2014) Global Ocean conveyor lowers extinction risk in the deep sea. Deep-Sea Res Part 1 Oceanogr Res Pap 88:8–16CrossRefGoogle Scholar
  19. Hurrell JW (1995) Decadal trends in the North Atlantic oscillation, regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  20. Jokiel PL, Hunter CL, Taguchi S, et al (1993) Ecological impact of a fresh-water “reef kill” in Kaneohe Bay, Oahu, Hawaii. Coral Reefs 12:177–184CrossRefGoogle Scholar
  21. Kelley C, Ting M, Seager R, et al (2012) The relative contributions of radiative forcing and internal climate variability to the late 20th century winter drying of the Mediterranean region. Clim Dyn 38:2001–2015.  https://doi.org/10.1007/s00382-011-1221-z CrossRefGoogle Scholar
  22. Klein B, Roether W, Manca BB, et al (1999) The large deep water transient in the Eastern Mediterranean. Deep-Sea Res Part 1 Oceanogr Res Pap 46:371–414CrossRefGoogle Scholar
  23. Kotthoff U, Müller UC, Pross J, et al (2008) Lateglacial and Holocene vegetation dynamics in the Aegean region: an integrated view based on pollen data from marine and terrestrial archives. The Holocene 18:1019–1032.  https://doi.org/10.1177/0959683608095573 CrossRefGoogle Scholar
  24. Krahman G, Schott F (1998) Longterm increases in Western Mediterranean salinities and temperatures: anthropogenic and climatic sources. Geophys Res Lett 25:4209–4212CrossRefGoogle Scholar
  25. Krijgsman W, Hilgen FJ, Raffi I, et al (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature 400:652–655CrossRefGoogle Scholar
  26. Kuanui P, Chavanich S, Voranop Viyakarn V, et al (2015) Effects of temperature and salinity on survival rate of cultured corals and photosynthetic efficiency of zooxanthellae in coral tissues. Ocean Sci J 50:263–268.  https://doi.org/10.1007/s12601-015-0023-3 CrossRefGoogle Scholar
  27. Ludwig L, Dumont E, Meybeck M, et al (2009) River discharges of water and nutrients to the Mediterranean and Black Sea: major drivers for ecosystem changes during past and future decades? Progr Oceanogr 80:199–217CrossRefGoogle Scholar
  28. Macias D, García-Gorríz E, Piroddi C, et al (2014) Biogeochemical control of marine productivity in the Mediterranean Sea during the last 50 years. Glob Biochem Cycles 28:897–907.  https://doi.org/10.1002/2014GB004846 CrossRefGoogle Scholar
  29. Macias DM, Garcia-Gorriz E, Stips A (2015) Productivity changes in the Mediterranean Sea for the twenty-first century in response to changes in the regional atmospheric forcing. Front Mar Sci 2:79.  https://doi.org/10.3389/fmars.2015.00079 CrossRefGoogle Scholar
  30. Malanotte-Rizzoli P, Eremeev VN (eds) (1999) The Eastern Mediterranean as a laboratory basin for the assessment of contrasting ecosystems. Nato Science series, vol 51. Springer, HeidelbergGoogle Scholar
  31. Mariotti A (2010) Recent changes in the Mediterranean water cycle: a pathway toward long-term regional hydroclimatic change? J Clim 23:1513–1525CrossRefGoogle Scholar
  32. Mariotti A, Zeng N, Yoon J, et al (2008) Mediterranean water cycle changes: transition to drier 21st century conditions in observations and CMIP3 simulations. Environ Res Lett 3:044001.  https://doi.org/10.1088/1748-9326/3/044001 CrossRefGoogle Scholar
  33. Mariotti A, Pan Y, Zeng N, et al (2015) Long-term climate change in the Mediterranean region in the midst of decadal variability. Clim Dyn 44:1437–1456CrossRefGoogle Scholar
  34. McCartney MS, Mauritzen C (2001) On the origin of the warm inflow to the Nordic seas. Progr Oceanogr 51:125–214CrossRefGoogle Scholar
  35. Potter R, Lozier S (2004) On the warming and salinification of the Mediterranean outflow waters in the North Atlantic. Geophys Res Lett 31:L01202.  https://doi.org/10.1029/2003GL018161 CrossRefGoogle Scholar
  36. Poulos SE, Drakopoulos PG (2001) A reassessment of the Mediterranean river runoff. Rapp Comm Int Mer Mediterr 36:76Google Scholar
  37. Reid JL (1979) On the contribution of the Mediterranean Sea outflow to the Norwegian-Greenland Sea. Deep-Sea Res Part 1 Oceanogr Res Pap 26:1199–1223CrossRefGoogle Scholar
  38. Remia A, Taviani M (2005) Shallow-buried Pleistocene Madrepora-dominated coral mounds on a muddy continental slope, Tuscan Archipelago, NE Tyrrhenian Sea. Facies 50:419–425.  https://doi.org/10.1007/s10347-004-0029-2 CrossRefGoogle Scholar
  39. Rixen M, Beckers J-M, Levitus S, et al (2005) The Western Mediterranean deep water: a proxy for climate change. Geophys Res Lett 32:L12608.  https://doi.org/10.1029/2005GL022702 CrossRefGoogle Scholar
  40. Rohling EJ, Bryden HL (1992) Man-induced salinity and temperature increases in western Mediterranean water. J Geophys Res 97:11191–11198CrossRefGoogle Scholar
  41. Rohling EJ, Marino G, Grant KM (2015) Mediterranean climate and oceanography, and the periodic development of anoxic events (sapropels). Earth Sci Rev 143:62–97.  https://doi.org/10.1016/j.earscirev.2015.01.008 CrossRefGoogle Scholar
  42. Romanou A, Tselioudis G, Zerefos CS, et al (2010) Evaporation-precipitation variability over the Mediterranean and the Black Seas from satellite and reanalysis estimates. J Clim 23:5268–5287CrossRefGoogle Scholar
  43. Schroeder K, Chiggiato J, Bryden HL, et al (2016) Abrupt climate shift in the Western Mediterranean Sea. Sci Rep 6:23009.  https://doi.org/10.1038/srep23009 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Skliris N, Lascaratos A (2004) Impacts of the Nile River damming on the thermohaline circulation and water mass characteristics of the Mediterranean Sea. J Mar Syst 52:121–143CrossRefGoogle Scholar
  45. Skliris N, Sofianos S, Lascaratos A (2007) Hydrological changes in the Mediterranean Sea in relation to changes in the freshwater budget: a numerical modelling study. J Mar Syst 65:400–416CrossRefGoogle Scholar
  46. Skliris N, Sofianos S, Gkanasos A, et al (2012) Decadal scale variability of sea surface temperature in the Mediterranean Sea in relation to atmospheric variability. Ocean Dyn 62:13–30CrossRefGoogle Scholar
  47. Skliris N, Marsh R, Josey SA, et al (2014) Salinity changes in the World Ocean since 1950 in relation to changing surface freshwater fluxes. Clim Dyn 43:709–736CrossRefGoogle Scholar
  48. Skliris N, Zika JD, Nurser G, et al (2016) Global water cycle amplifying at less than the Clausius-Clapeyron rate. Sci Rep 6:38752.  https://doi.org/10.1038/srep38752 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Skliris N, Zika JD, Herold L, et al (2018) Mediterranean Sea water budget long-term trend inferred from salinity observations. Clim Dyn.  https://doi.org/10.1007/s00382-017-4053-7 CrossRefGoogle Scholar
  50. Somot S, Sevault F, Déqué M, et al (2008) 21st century climate change scenario for the Mediterranean using a coupled atmosphere–ocean regional climate model. Glob Planet Chang 63:112–126CrossRefGoogle Scholar
  51. Taviani M, Angeletti L, Canese S, et al (2017) The “Sardinian cold-water coral province” in the context of the Mediterranean coral ecosystems. Deep-Sea Res Part 2 Top Stud Oceanogr 145:61–78.  https://doi.org/10.1016/j.dsr2.2015.12.008 CrossRefGoogle Scholar
  52. Tsimplis MN, Josey SA (2001) Forcing of the Mediterranean Sea by atmospheric oscillations over the North Atlantic. Geophys Res Lett 28:803–806CrossRefGoogle Scholar
  53. Tsimplis MN, Zervakis V, Josey SA, et al (2006) Changes in the oceanography of the Mediterranean Sea and their link to climate variability. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Developments in earth & environmental sciences. Mediterranean climate variability, vol 4. Elsevier, Amsterdam, pp 227–282Google Scholar
  54. Vargas-Yanez M, Zunino P, Benali A, et al (2010) How much is the western Mediterranean really warming and salting? J Geophys Res 115:C04001.  https://doi.org/10.1029/2009JC005816 CrossRefGoogle Scholar

Cross References

  1. Chimienti G, Bo M, Taviani M, et al (this volume) Occurrence and biogeography of Mediterranean cold-water coralsGoogle Scholar
  2. Freiwald A (this volume) Messinian salinity crisis: what happened to cold-water corals?Google Scholar
  3. Hayes D, Schroeder K, Poulain PM, et al (this volume) Review of the circulation and characteristics of intermediate water masses of the Mediterranean – implications for cold-water coral habitatsGoogle Scholar
  4. Lo Iacono C, Savini A, Huvenne VAI, et al (this volume) Habitat mapping of cold-water corals in the Mediterranean SeaGoogle Scholar
  5. Maier C, Weinbauer MG, Gattuso JP (this volume) Fate of Mediterranean scleractinian cold-water corals as a result of global climate change. A synthesisGoogle Scholar
  6. Taviani M, Vertino A, Angeletti L, et al (this volume) Paleoecology of Mediterranean cold-water coralsGoogle Scholar
  7. Vertino A, Taviani M, Corselli C (this volume) Spatio-temporal distribution of Mediterranean cold-water coralsGoogle Scholar
  8. Wortel R, Meijer P (this volume) The interface between tectonic evolution and cold-water coral dynamics in the MediterraneanGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ocean and Earth Science, National Oceanography CentreUniversity of SouthamptonSouthamptonUK

Personalised recommendations